Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(2): e54384, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914165

RESUMO

During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.


Assuntos
Hemangioblastos , Diferenciação Celular , Linhagem da Célula/genética , Feminino , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Gravidez , Piruvatos/metabolismo
2.
Genome Biol ; 22(1): 197, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225769

RESUMO

BACKGROUND: Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS: Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS: By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Animais , Diferenciação Celular , Conjuntos de Dados como Assunto , Embrião de Mamíferos , Células Eritroides/citologia , Feto , Fator de Transcrição GATA1/deficiência , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Humanos , Cinética , Fígado/citologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Célula Única , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
3.
Nature ; 566(7745): 490-495, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30787436

RESUMO

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.


Assuntos
Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Gastrulação , Organogênese , Análise de Célula Única , Animais , Linhagem da Célula/genética , Quimera/embriologia , Quimera/genética , Quimera/metabolismo , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Endotélio/citologia , Endotélio/embriologia , Endotélio/metabolismo , Feminino , Gastrulação/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Masculino , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Mutação/genética , Células Mieloides/citologia , Organogênese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linha Primitiva/citologia , Linha Primitiva/embriologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/deficiência , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética
4.
5.
Cell Rep ; 19(1): 10-19, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380349

RESUMO

During development, hematopoietic cells originate from endothelium in a process known as endothelial-to-hematopoietic transition (EHT). To study human EHT, we coupled flow cytometry and single-cell transcriptional analyses of human pluripotent stem cell-derived CD34+ cells. The resulting transcriptional hierarchy showed a continuum of endothelial and hematopoietic signatures. At the interface of these two signatures, a unique group of cells displayed both an endothelial signature and high levels of key hematopoietic stem cell-associated genes. This interphase group was validated via sort and subculture as an immediate precursor to hematopoietic cells. Differential expression analyses further divided this population into subgroups, which, upon subculture, showed distinct hematopoietic lineage differentiation potentials. We therefore propose that immediate precursors to hematopoietic cells already have their hematopoietic lineage restrictions defined prior to complete downregulation of the endothelial signature. These findings increase our understanding of the processes of de novo hematopoietic cell generation in the human developmental context.


Assuntos
Células Endoteliais/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Antígenos CD34/metabolismo , Linhagem da Célula , Células Cultivadas , Regulação para Baixo , Células Endoteliais/citologia , Endotélio/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Humanos , Leucossialina/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Análise de Célula Única , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
6.
Stem Cells ; 35(1): 197-206, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27641910

RESUMO

Cell stressors, such as elevated levels of reactive oxygen species (ROS), adversely affect hematopoietic stem cell (HSC) reconstituting ability. However, the effects of ROS have not been evaluated in the context of hematopoietic development from human pluripotent stem cells (hPSCs). Using our previously described in vitro system for efficient derivation of hematopoietic cells from hPSCs, we show that the vast majority of generated hematopoietic cells display supraphysiological levels of ROS compared to fresh cord blood cells. Elevated ROS resulted in DNA damage of the CD34+ hematopoietic fraction and, following functional assays, reduced colony formation and impaired proliferative capacity. Interestingly, all the proliferative potential of the most primitive hematopoietic cells was limited to a small fraction with low ROS levels. We show that elevation of ROS in hPSC-derived hematopoietic cells is contributed by multiple distinct cellular processes. Furthermore, by targeting these molecular processes with 4 unique factors, we could reduce ROS levels significantly, yielding a 22-fold increase in the most primitive CD90+ CD34+ hematopoietic cells with robust growth capacity. We demonstrate that the ROS reducing factors specifically reduced ROS in more primitive hematopoietic fractions, in contrast to endothelial cells that maintained low ROS levels in the cultures. We conclude that high levels of ROS in in vitro differentiation systems of hPSCs is a major determinant in the lack of ability to generate hematopoietic cells with similar proliferation/differentiation potential to in vivo hematopoietic progenitors, and suggest that elevated ROS is a significant barrier to generating hPSC-derived repopulating HSCs. Stem Cells 2017;35:197-206.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/citologia , Espécies Reativas de Oxigênio/farmacologia , Antígenos Thy-1/metabolismo , Animais , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos , Frações Subcelulares/metabolismo
7.
Stem Cell Reports ; 6(5): 692-703, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27117782

RESUMO

Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs.


Assuntos
Diferenciação Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores CXCR4/genética , AMP Cíclico/genética , Endotélio/crescimento & desenvolvimento , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Estresse Oxidativo/genética , Transdução de Sinais
8.
Stem Cell Reports ; 4(2): 269-81, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25680478

RESUMO

The functions of retinoic acid (RA), a potent morphogen with crucial roles in embryogenesis including developmental hematopoiesis, have not been thoroughly investigated in the human setting. Using an in vitro model of human hematopoietic development, we evaluated the effects of RA signaling on the development of blood and on generated hematopoietic progenitors. Decreased RA signaling increases the generation of cells with a hematopoietic stem cell (HSC)-like phenotype, capable of differentiation into myeloid and lymphoid lineages, through two separate mechanisms: by increasing the commitment of pluripotent stem cells toward the hematopoietic lineage during the developmental process and by decreasing the differentiation of generated blood progenitors. Our results demonstrate that controlled low-level RA signaling is a requirement in human blood development, and we propose a new interpretation of RA as a regulatory factor, where appropriate control of RA signaling enables increased generation of hematopoietic progenitor cells from pluripotent stem cells in vitro.


Assuntos
Hematopoese/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 107(25): 11602-7, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534548

RESUMO

In this study, we have used a microRNA-regulated lentiviral reporter system to visualize and segregate differentiating neuronal cells in pluripotent cultures. Efficient suppression of transgene expression, specifically in undifferentiated pluripotent cells, was achieved by using a lentiviral vector expressing a fluorescent reporter gene regulated by microRNA-292. Using this strategy, it was possible to track progeny from murine ES, human ES cells, and induced pluripotent stem cells as they differentiated toward the neural lineage. In addition, this strategy was successfully used to FACS purify neuronal progenitors for molecular analysis and transplantation. FACS enrichment reduced tumor formation and increased survival of ES cell-derived neuronal progenitors after transplantation. The properties and versatility of the microRNA-regulated vectors allows broad use of these vectors in stem cell applications.


Assuntos
Técnicas de Cultura de Células , Lentivirus/genética , MicroRNAs/genética , Neurônios/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Separação Celular , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA