Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2311733121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285951

RESUMO

In contrast to prevalent strategies which make use of ß-sheet mimetics to block Aß fibrillar growth, in this study, we designed a series of sulfonyl-γ-AApeptide helices that targeted the crucial α-helix domain of Aß13-26 and stabilized Aß conformation to avoid forming the neurotoxic Aß oligomeric ß-sheets. Biophysical assays such as amyloid kinetics and TEM demonstrated that the Aß oligomerization and fibrillation could be greatly prevented and even reversed in the presence of sulfonyl-γ-AApeptides in a sequence-specific and dose-dependent manner. The studies based on circular dichroism, Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) spectra unambiguously suggested that the sulfonyl-γ-AApeptide Ab-6 could bind to the central region of Aß42 and induce α-helix conformation in Aß. Additionally, Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) was employed to rule out a colloidal mechanism of inhibitor and clearly supported the capability of Ab-6 for inhibiting the formation of Aß aggregated forms. Furthermore, Ab-6 could rescue neuroblastoma cells by eradicating Aß-mediated cytotoxicity even in the presence of pre-formed Aß aggregates. The confocal microscopy demonstrated that Ab-6 could still specifically bind Aß42 and colocalize into mitochondria in the cellular environment, suggesting the rescue of cell viability might be due to the protection of mitochondrial function otherwise impaired by Aß42 aggregation. Taken together, our studies indicated that sulfonyl-γ-AApeptides as helical peptidomimetics could direct Aß into the off-pathway helical secondary structure, thereby preventing the formation of Aß oligomerization, fibrillation and rescuing Aß induced cell cytotoxicity.


Assuntos
Amidas , Peptídeos beta-Amiloides , Amiloide , Amiloide/química , Conformação Proteica em alfa-Hélice , Conformação Molecular , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo
2.
J Pharmacol Exp Ther ; 382(2): 233-245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680376

RESUMO

Diabetes is associated with increased cardiac injury and sudden death. Nicotinamide phosphoribosyltransferase (Nampt) is an essential enzyme for the NAD+ salvage pathway and is dysregulated in diabetes. Nampt activation results in rescued NADH/NAD+ ratios and provides pharmacological changes necessary for diabetic cardioprotection. Computer docking shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) allows for enhanced Nampt dimerization and association. To test the pharmacological application, we used male leptin receptor-deficient (db/db) mice and treated them with Nampt activator P7C3. The effects of 4-week P7C3 treatment on cardiac function were evaluated along with molecular signaling changes for phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS), and sirtuin 1 (SIRT1). The cardiac function evaluated by ECG and echocardiography were significantly improved after 4 weeks of P7C3 treatment. Biochemically, higher NADH/NAD+ ratios in diabetic hearts were rescued by P7C3 treatment. Moreover, activities of Nampt and SIRT1 were significantly increased in P7C3-treated diabetic hearts. P7C3 treatment significantly decreased the blood glucose in diabetic mice with 4-week treatment as noted by glucose tolerance test and fasting blood glucose measurements compared with vehicle-treated mice. P7C3 activated Nampt enzymatic activity both in vitro and in the 4-week diabetic mouse hearts, demonstrating the specificity of the small molecule. P7C3 treatment significantly enhanced the expression of cardioprotective signaling of p-AKT, p-eNOS, and Beclin 1 in diabetic hearts. Nampt activator P7C3 allows for decreased infarct size with decreased Troponin I and lactose dehydrogenase (LDH) release, which is beneficial to the heart. Overall, the present study shows that P7C3 activates Nampt and SIRT1 activity and decreases NADH/NAD+ ratio, resulting in improved biochemical signaling providing cardioprotection. SIGNIFICANCE STATEMENT: This study shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) is effective in treating diabetes and cardiovascular diseases. The novel small molecule is antiarrhythmic and improves the ejection fraction in diabetic hearts. The study successfully demonstrated that P7C3 decreases the infarct size in hearts during myocardial infarction and ischemia-reperfusion injury. Biochemical and cellular signaling show increased NAD+ levels, along with Nampt activity involved in upregulating protective signaling in the diabetic heart. P7C3 has high therapeutic potential for rescuing heart disease.


Assuntos
Diabetes Mellitus Experimental , Infarto do Miocárdio , Animais , Glicemia , Carbazóis , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/tratamento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferase , Proteínas Proto-Oncogênicas c-akt , Sirtuína 1/metabolismo
3.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33468626

RESUMO

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias , Pancreatite Crônica , Molécula 1 de Interação Estromal , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
4.
Pept Sci (Hoboken) ; 113(3): e24199, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35859761

RESUMO

HYD1 is an all D-amino acid linear 10-mer peptide that was discovered by one-bead-one-compound screening. HYD1 has five hydrophobic amino acids flanked by polar amino acids. Alanine scanning studies showed that alternating hydrophobic amino acid residues and N- and C-terminal lysine side chains were contributors to the biological activity of the linear 10-mer analogs. This observation led us to hypothesize that display of the hydrophobic pentapeptide sequence of HYD1 in a cyclic beta-hairpin-like scaffold could lead to better bioavailability and biological activity. An amphipathic pentapeptide sequence was used to form an antiparallel strand and those strands were linked via dipeptide-like sequences selected to promote ß-turns. Early cyclic analogs were more active but otherwise mimicked the biological activity of the linear HYD1 peptide. The cyclic peptidomimetics were synthesized using standard Fmoc solid phase synthesis to form linear peptides, followed by solution phase or on-resin cyclization. SAR studies were carried out with an aim to increase the potency of these drug candidates for the killing of multiple myeloma cells in vitro. The solution structures of 1, 5, and 10 were elucidated using NMR spectroscopy. 1H NMR and 2D TOCSY studies of these peptides revealed a downfield Hα proton chemical shift and 2D NOE spectral analysis consistent with a ß-hairpin-like structure.

5.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515268

RESUMO

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Assuntos
Adenosina Trifosfatases/genética , Etilmaleimida/metabolismo , Ácidos Fosfatídicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Proteínas de Transporte Vesicular/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/química , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Ácidos Fosfatídicos/antagonistas & inibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Vacúolos/genética , Proteínas de Transporte Vesicular/química
6.
J Biol Chem ; 293(16): 6187-6200, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29449372

RESUMO

Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function.


Assuntos
Proteínas Culina/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sequência Conservada , Humanos , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Lenalidomida/farmacologia , Ligantes , Camundongos , Sondas Moleculares , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/metabolismo , Talidomida/análogos & derivados , Talidomida/metabolismo , Talidomida/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Ubiquitina/metabolismo
7.
J Chem Inf Model ; 57(2): 335-344, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28151650

RESUMO

Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.


Assuntos
Cálcio/farmacologia , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo , Humanos , Domínios Proteicos/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 479(3): 551-556, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27666481

RESUMO

Sortilin is a multi-ligand sorting receptor that interacts with B100-containing VLDL and LDL as well as other ligands including neurotensin (NT). The current study investigates the hypothesis that phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generated downstream of insulin action can directly bind to sortilin. NT binds to sortilin at a well characterized site via its carboxy terminus (C-term). Using a crystal structure of human sortilin (hsortilin), PIP3 is predicted to bind at this C-term site. Binding of PIP3 to hsortilin is demonstrated using surface plasmon resonance (SPR) flowing PIP3 nanodiscs over immobilized hsortilin. Studies were performed using SPR where dibutanoyl PIP3 is shown to compete with NT for sortilin binding. Rat VLDL and LDL were evaluated for PIP3 content immunologically using monoclonal antibodies directed against PIP3. Rat plasma VLDL contained three times more immunoreactive PIP3 than LDL per µg of protein. Because VLDL contains additional ligands that bind sortilin, to distinguish specific PIP3 binding, we used PIP3 liposomes. Liposome floatation assays were used to demonstrate PIP3 liposome binding to sortilin. Using SPR and immobilized hsortilin, the C-term NT tetrapeptide (P-Y-I-L) is shown to bind to hsortilin. A compound (cpd984) was identified with strong theoretical binding to the site on sortilin involved in NT N-terminal binding. When cpd984 is co-incubated with the tetrapeptide, the affinity of binding to sortilin is increased. Similarly, the affinity of PIP3 liposome binding increased in the presence of cpd984. Overall, results demonstrate that sortilin is a PIP3 binding protein with binding likely to occur at the C-term NT binding site. The presence of multiple ligands on B100-containing lipoproteins, VLDL and LDL, raises the interesting possibility for increased interaction with sortilin based on the presence of PIP3.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Lipoproteínas VLDL/química , Neurotensina/química , Fosfatos de Fosfatidilinositol/química , Animais , Sítios de Ligação , Simulação por Computador , Humanos , Lipoproteínas VLDL/sangue , Lipossomos/química , Fosfatidilinositóis/química , Ligação Proteica , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de Superfície
9.
Bioorg Med Chem Lett ; 26(15): 3826-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27311892

RESUMO

It has been found that tumor cells and tissues, compared to normal cells, have higher levels of copper and possibly other metal ions. This presents a potential vulnerability of tumor cells that can serve as a physiological difference between cancer cells and normal cells and allows design of compounds that selectively target tumor cells while sparing normal cells. Recently we have identified compounds that have potential to inhibit the proteasome in tumor cells and induce cell death by mobilizing endogenous tumor copper resulting in in cellulo activation of the compound. These compounds hence act as pro-drugs, becoming active drugs in tumor cells with high copper content but remaining essentially inactive in normal cells, thereby greatly reducing adverse effects in patients. Such use would be of significant benefit in early detection and treatment of cancers, in particular, aggressive cancers such as pancreatic cancer which is usually not detected until it has reached an advanced stage. Six compounds were identified following virtual screening of the NCI Diversity Set with our proteasome computer model followed by confirmation with a biochemical assay that showed significant inhibition of the proteasome by the compounds in the presence of copper ions. In a dose response assay, NSC 37408 (6,7-dihydroxy-1-benzofuran-3-one), our best compound, exhibited an IC50 of 3µM in the presence of 100nM copper.


Assuntos
Antineoplásicos/farmacologia , Cobre/farmacologia , Compostos Organometálicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobre/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química , Relação Estrutura-Atividade
10.
Chem Commun (Camb) ; 51(90): 16259-62, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26400240

RESUMO

Short peptides featuring a tetrahydropyridazinedione (tpd) backbone tether exhibit reduced conformational flexibility external to the heterocyclic constraint. Analysis by NMR, molecular modeling and X-ray crystallography suggests both covalent and non-covalent stabilization of extended peptide conformations. An efficient solid-phase protocol was developed for the synthesis of a new class of ß-strand mimics based on oligomeric tpd subunits.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Peptídeos/química , Piridazinas/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular
11.
J Med Chem ; 56(10): 3783-805, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23547706

RESUMO

Screening of the 50000 ChemBridge compound library led to the identification of the oxadiazole-isopropylamide 1 (PI-1833) which inhibited chymotrypsin-like (CT-L) activity (IC50 = 0.60 µM) with little effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and postglutamyl-peptide-hydrolysis-like (PGPH-L). LC-MS/MS and dialysis show that 1 is a noncovalent and rapidly reversible CT-L inhibitor. Focused library synthesis provided 11ad (PI-1840) with CT-L activity (IC50 = 27 nM). Detailed SAR studies indicate that the amide moiety and the two phenyl rings are sensitive toward modifications. Hydrophobic residues, such as propyl or butyl in the para position (not ortho or meta) of the A-ring and a m-pyridyl group as B-ring, significantly improve activity. Compound 11ad (IC50 = 0.37 µM) is more potent than 1 (IC50 = 3.5 µM) at inhibiting CT-L activity in intact MDA-MB-468 human breast cancer cells and inhibiting their survival. The activity of 11ad warrants further preclinical investigation of this class as noncovalent proteasome inhibitors.


Assuntos
Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/farmacologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Quimotripsina/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Indicadores e Reagentes , Espectrometria de Massas , Relação Estrutura-Atividade , Tripsina/metabolismo
12.
Cancer Res ; 73(6): 1922-33, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322008

RESUMO

STAT3-STAT3 dimerization, which involves reciprocal binding of the STAT3-SH2 domain to phosphorylated tyrosine-705 (Y-705), is required for STAT3 nuclear translocation, DNA binding, and transcriptional regulation of downstream target genes. Here, we describe a small molecule S3I-1757 capable of disrupting STAT3-STAT3 dimerization, activation, and malignant transforming activity. Fluorescence polarization assay and molecular modeling suggest that S3I-1757 interacts with the phospho-Y-705-binding site in the SH2 domain and displaces fluorescein-labeled GpYLPQTV phosphotyrosine peptide from binding to STAT3. We generated hemagglutinin (HA)-tagged STAT3 and FLAG-tagged STAT3 and showed using coimmunoprecipitation and colocalization studies that S3I-1757 inhibits STAT3 dimerization and STAT3-EGF receptor (EGFR) binding in intact cells. Treatment of human cancer cells with S3I-1757 (but not a closely related analog, S3I-1756, which does not inhibit STAT3 dimerization), inhibits selectively the phosphorylation of STAT3 over AKT1 and ERK1/2 (MAPK3/1), nuclear accumulation of P-Y705-STAT3, STAT3-DNA binding, and transcriptional activation and suppresses the expression levels of STAT3 target genes, such as Bcl-xL (BCL2L1), survivin (BIRC5), cyclin D1 (CCND1), and matrix metalloproteinase (MMP)-9. Furthermore, S3I-1757, but not S3I-1756, inhibits anchorage-dependent and -independent growth, migration, and invasion of human cancer cells, which depend on STAT3. Finally, STAT3-C, a genetically engineered mutant of STAT3 that forms a constitutively dimerized STAT3, rescues cells from the effects of S3I-1757 inhibition. Thus, we have developed S3I-1757 as a STAT3-STAT3 dimerization inhibitor capable of blocking hyperactivated STAT3 and suppressing malignant transformation in human cancer cells that depend on STAT3.


Assuntos
Transformação Celular Neoplásica , Fator de Transcrição STAT3/antagonistas & inibidores , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Primers do DNA , Dimerização , Polarização de Fluorescência , Humanos , Modelos Moleculares , Fator de Transcrição STAT3/metabolismo
13.
Bioorg Med Chem Lett ; 22(18): 5961-5, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22901384

RESUMO

Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, is overexpressed in a broad range of human cancers and plays a critical role in conferring resistance to chemotherapy. In the course of screening a natural product-like library of sesquiterpenoid analogs, we identified substituted hexahydronaphthalenes that showed activity against the Mcl-1/BimBH3 interaction in vitro. Here, we describe the synthesis of a small library of analogs and their biological evaluation. The most potent inhibitor in the series (19) exhibits an IC(50) of 8.3 µM by ELISA and disrupts the interaction between endogenously expressed Mcl-1 and Bim in cultured MDA-MB-468 breast cancer cells.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Naftalenos/síntese química , Naftalenos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Antineoplásicos/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Naftalenos/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
J Chem Inf Model ; 52(8): 2192-203, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22747098

RESUMO

Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term "Virtual Target Screening (VTS)", a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here, we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Interface Usuário-Computador , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Bases de Dados de Proteínas , Aprovação de Drogas , Humanos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
15.
J Med Chem ; 55(5): 2474-8, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22272748

RESUMO

Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC(50) = 650 nM) and ROCK2 (IC(50) = 670 nM), whereas compound 24 was more selective for ROCK2 (IC(50) = 100 nM) over ROCK1 (IC(50) = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.


Assuntos
Quinases Associadas a rho/antagonistas & inibidores , Trifosfato de Adenosina/química , Sítios de Ligação , Miosinas Cardíacas/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Cadeias Leves de Miosina/metabolismo , Fosforilação , Relação Estrutura-Atividade
16.
J Med Chem ; 55(5): 1978-98, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22220566

RESUMO

Screening efforts led to the identification of PI-8182 (1), an inhibitor of the chymotrypsin-like (CT-L) activity of the proteasome. Compound 1 contains a hydronaphthoquinone pharmacophore with a thioglycolic acid side chain at position 2 and thiophene sulfonamide at position 4. An efficient synthetic route to the hydronaphthoquinone sulfonamide scaffold was developed, and compound 1 was synthesized in-house to confirm the structure and activity (IC(50) = 3.0 ± 1.6 µM [n = 25]). Novel hydronaphthoquinone derivatives of 1 were designed, synthesized, and evaluated as proteasome inhibitors. The structure-activity relationship (SAR) guided synthesis of more than 170 derivatives revealed that the thioglycolic acid side chain is required and the carboxylic acid group of this side chain is critical to the CT-L inhibitory activity of compound 1. Furthermore, replacement of the carboxylic acid with carboxylic acid isosteres such as tetrazole or triazole greatly improves potency. Compounds with a thio-tetrazole or thio-triazole side chain in position 2, where the thiophene was replaced by hydrophobic aryl moieties, were the most active compounds with up to 20-fold greater CT-L inhibition than compound 1 (compounds 15e, 15f, 15h, 15j, IC(50) values around 200 nM, and compound 29, IC(50) = 150 nM). The synthetic iterations described here not only led to improving potency in vitro but also resulted in the identification of compounds that are more active such as 39 (IC(50) = 0.44 to 1.01 µM) than 1 (IC(50) = 3.54 to 7.22 µM) at inhibiting the proteasome CT-L activity in intact breast cancer cells. Treatment with 39 also resulted in the accumulation of ubiquitinated cellular proteins and inhibition of tumor cell proliferation of breast cancer cells. The hit 1 and its analogue 39 inhibited proteasome CT-L activity irreversibly.


Assuntos
Antineoplásicos/síntese química , Naftoquinonas/síntese química , Inibidores de Proteassoma , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quimotripsina/metabolismo , Estabilidade de Medicamentos , Humanos , Naftoquinonas/química , Naftoquinonas/farmacologia , Coelhos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Tetrazóis/síntese química , Tetrazóis/química , Tetrazóis/farmacologia , Tioglicolatos/síntese química , Tioglicolatos/química , Tioglicolatos/farmacologia , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia
17.
Medchemcomm ; 3(6): 699-709, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275831

RESUMO

Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1.

18.
Bioorg Med Chem Lett ; 21(2): 730-3, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21193311

RESUMO

Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17-phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triterpenoids, enoxolone, and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors.


Assuntos
Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacologia , Estramustina/análogos & derivados , Estramustina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacologia
19.
Bioorg Med Chem ; 18(15): 5576-92, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20621484

RESUMO

Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure-activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the beta5 and beta6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the beta6 subunit.


Assuntos
Naftoquinonas/química , Inibidores de Proteases/síntese química , Inibidores de Proteassoma , Antraciclinas/química , Sítios de Ligação , Simulação por Computador , Ligação de Hidrogênio , Naftoquinonas/síntese química , Naftoquinonas/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química
20.
Biochem Pharmacol ; 80(6): 801-10, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20510203

RESUMO

The protein tyrosine phosphatase (PTP) Shp2 (PTPN11) is an attractive target for anticancer drug discovery because it mediates growth factor signaling and its gain-of-function mutants are causally linked to leukemias. We previously synthesized SPI-112 from a lead compound of Shp2 inhibitor, NSC-117199. In this study, we demonstrated that SPI-112 bound to Shp2 by surface plasmon resonance (SPR) and displayed competitive inhibitor kinetics to Shp2. Like some other compounds in the PTP inhibitor discovery efforts, SPI-112 was not cell permeable, precluding its use in biological studies. To overcome the cell permeation issue, we prepared a methyl ester SPI-112 analog (SPI-112Me) that is predicted to be hydrolyzed to SPI-112 upon entry into cells. Fluorescence uptake assay and confocal imaging suggested that SPI-112Me was taken up by cells. Incubation of cells with SPI-112Me inhibited epidermal growth factor (EGF)-stimulated Shp2 PTP activity and Shp2-mediated paxillin dephosphorylation, Erk1/2 activation, and cell migration. SPI-112Me treatment also inhibited Erk1/2 activation by a Gab1-Shp2 chimera. Treatment of Shp2(E76K) mutant-transformed TF-1 myeloid cells with SPI-112Me resulted in inhibition of Shp2(E76K)-dependent cell survival, which is associated with inhibition of Shp2(E76K) PTP activity, Shp2(E76K)-induced Erk1/2 activation, and Bcl-XL expression. Furthermore, SPI-112Me enhanced interferon-gamma (IFN-gamma)-stimulated STAT1 tyrosine phosphorylation, ISRE-luciferase reporter activity, p21 expression, and the anti-proliferative effect. Thus, the SPI-112 methyl ester analog was able to inhibit cellular Shp2 PTP activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/química , Indóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Sulfonamidas/farmacologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia , Ligação Competitiva , Linhagem Celular Transformada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Células HT29 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 11/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA