Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Med Genet A ; 191(11): 2757-2767, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596828

RESUMO

Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder. Of the individuals affected, four demonstrate radiographic evidence of the classical triad of Dandy-Walker malformation including hypoplastic vermis, fourth ventricle enlargement, and torcular elevation. Cerebellar anomalies have not been previously reported in association with CAPN15-related disease. Here, we present three unrelated families with findings consistent with oculogastrointestinal neurodevelopmental syndrome and cerebellar pathology including Dandy-Walker malformation. To corroborate these novel clinical findings, we present supporting data from the mouse model suggesting an important role for this protein in normal cerebellar development. Our findings add six molecularly confirmed cases to the literature and additionally establish a new association of Dandy-Walker malformation with biallelic CAPN15 variants, thereby expanding the neurologic spectrum among patients affected by CAPN15-related disease.


Assuntos
Vermis Cerebelar , Síndrome de Dandy-Walker , Microcefalia , Animais , Camundongos , Humanos , Síndrome de Dandy-Walker/diagnóstico , Síndrome de Dandy-Walker/genética , Cerebelo/anormalidades , Microcefalia/complicações , Fenótipo , Calpaína/genética
2.
Genet Med ; 21(7): 1603-1610, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30563988

RESUMO

PURPOSE: Structural variation (SV) is associated with inherited diseases. Next-generation sequencing (NGS) is an efficient method for SV detection because of its high-throughput, low cost, and base-pair resolution. However, due to lack of standard NGS protocols and a limited number of clinical samples with pathogenic SVs, comprehensive standards for SV detection, interpretation, and reporting are to be established. METHODS: We performed SV assessment on 60,000 clinical samples tested with hereditary cancer NGS panels spanning 48 genes. To evaluate NGS results, NGS and orthogonal methods were used separately in a blinded fashion for SV detection in all samples. RESULTS: A total of 1,037 SVs in coding sequence (CDS) or untranslated regions (UTRs) and 30,847 SVs in introns were detected and validated. Across all variant types, NGS shows 100% sensitivity and 99.9% specificity. Overall, 64% of CDS/UTR SVs were classified as pathogenic/likely pathogenic, and five deletions/duplications were reclassified as pathogenic using breakpoint information from NGS. CONCLUSION: The SVs presented here can be used as a valuable resource for clinical research and diagnostics. The data illustrate NGS as a powerful tool for SV detection. Application of NGS and confirmation technologies in genetic testing ensures delivering accurate and reliable results for diagnosis and patient care.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Humanos , Neoplasias/diagnóstico , Pseudogenes , Sensibilidade e Especificidade
3.
Am J Hum Genet ; 102(2): 233-248, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394989

RESUMO

Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ?99% probability of pathogenicity, and 73 had ?95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS.


Assuntos
Algoritmos , Substituição de Aminoácidos , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Sequência de Aminoácidos , Teorema de Bayes , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Expressão Gênica , Testes Genéticos , Humanos , Curva ROC , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Cancer Res ; 77(11): 2789-2799, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28283652

RESUMO

Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Idoso , Substituição de Aminoácidos , Animais , Estudos de Casos e Controles , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Camundongos , Mutação de Sentido Incorreto , Risco
5.
Am J Hum Genet ; 98(5): 801-817, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153395

RESUMO

Sequencing tests assaying panels of genes or whole exomes are widely available for cancer risk evaluation. However, methods for classification of variants resulting from this testing are not well studied. We evaluated the ability of a variant-classification methodology based on American College of Medical Genetics and Genomics (ACMG) guidelines to define the rate of mutations and variants of uncertain significance (VUS) in 180 medically relevant genes, including all ACMG-designated reportable cancer and non-cancer-associated genes, in individuals who met guidelines for hereditary cancer risk evaluation. We performed whole-exome sequencing in 404 individuals in 253 families and classified 1,640 variants. Potentially clinically actionable (likely pathogenic [LP] or pathogenic [P]) versus nonactionable (VUS, likely benign, or benign) calls were 95% concordant with locus-specific databases and Clinvar. LP or P mutations were identified in 12 of 25 breast cancer susceptibility genes in 26 families without identified BRCA1/2 mutations (11%). Evaluation of 84 additional genes associated with autosomal-dominant cancer susceptibility identified LP or P mutations in only two additional families (0.8%). However, individuals from 10 of 253 families (3.9%) had incidental LP or P mutations in 32 non-cancer-associated genes, and 9% of individuals were monoallelic carriers of a rare LP or P mutation in 39 genes associated with autosomal-recessive cancer susceptibility. Furthermore, 95% of individuals had at least one VUS. In summary, these data support the clinical utility of ACMG variant-classification guidelines. Additionally, evaluation of extended panels of cancer-associated genes in breast/ovarian cancer families leads to only an incremental clinical benefit but substantially increases the complexity of the results.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Testes Genéticos/normas , Genômica/normas , Guias como Assunto , Mutação/genética , Análise de Sequência de DNA/normas , Adulto , Idoso , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Exoma , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Pessoa de Meia-Idade , Adulto Jovem
6.
J Clin Oncol ; 33(4): 304-11, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452441

RESUMO

PURPOSE: Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. PATIENTS AND METHODS: Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. RESULTS: Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. CONCLUSION: Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives.


Assuntos
Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA1/genética , Proteína BRCA2/genética , Estudos de Coortes , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Adulto Jovem
7.
Hum Mutat ; 35(2): 151-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24323938

RESUMO

Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may help establish a direct correlation with cancer predisposition. Therefore, alternative ways of predicting the pathogenicity of these variants are urgently needed. Since BRCA2 is a protein involved in important cellular mechanisms such as DNA repair, replication, and cell cycle control, functional assays have been developed that exploit these cellular activities to explore the impact of the variants on protein function. In this review, we summarize assays developed and currently utilized for studying missense variants in BRCA2. We specifically depict details of each assay, including variants of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant on cancer risk.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Genes BRCA2 , Técnicas Genéticas , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Animais , Proteína BRCA2/fisiologia , Neoplasias da Mama/diagnóstico , Ciclo Celular , Reparo do DNA , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Neoplasias Ovarianas/diagnóstico , Reprodutibilidade dos Testes
8.
Clin Chem ; 60(2): 341-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24212087

RESUMO

BACKGROUND: Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting. METHODS: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501+3A>T). Differences in protocols were then assessed to determine which elements were critical in reliable assay design. RESULTS: PCR primer design strategies, PCR conditions, and product detection methods, combined with a prior knowledge of expected alternative transcripts, were the key factors for accurate splicing assay results. For example, because of the position of primers and PCR extension times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., BRCA2 c.8632+1G>A Δ19,20 and BRCA1 c.135-1G>T Δ5q and Δ3). Detection of low-abundance transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., BRCA2 c.426-12_8delGTTTT ins18bp). CONCLUSIONS: We provide recommendations for best practice and raise key issues to consider when designing mRNA assays for evaluation of unclassified sequence variants.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Testes Genéticos/métodos , Testes Genéticos/normas , Laboratórios/normas , Splicing de RNA , Predisposição Genética para Doença , Humanos , Análise Multivariada , Guias de Prática Clínica como Assunto , Sítios de Splice de RNA , Sensibilidade e Especificidade
9.
Cancer Res ; 73(1): 265-75, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23108138

RESUMO

The relevance of many BRCA2 variants of uncertain significance (VUS) to breast cancer has not been determined due to limited genetic information from families carrying these alterations. Here, we classified six new variants as pathogenic or nonpathogenic by analysis of genetic information from families carrying 64 individual BRCA2 DNA binding domain (DBD) missense mutations using a multifactorial likelihood model of cancer causality. Next, we evaluated the use of a homology-directed DNA break repair (HDR) functional assay as a method for inferring the clinical relevance of VUS in the DBD of BRCA2 using 18 established nonpathogenic missense variants and all 13 established pathogenic missense mutations from the BRCA2 DBD. Compared with the known status of these variants based on the multifactorial likelihood model, the sensitivity of the HDR assay for pathogenic mutations was estimated at 100% [95% confidence interval (CI): 75.3%-100%] and specificity was estimated at 100% (95% CI: 81.5%-100%). A statistical classifier for predicting the probability of pathogenicity of BRCA2 DBD variants was developed using these functional results. When applied to 33 additional VUS, the classifier identified eight with 99% or more probability of nonpathogenicity and 18 with 99% or more probability of pathogenicity. Thus, in the absence of genetic evidence, a cell-based HDR assay can provide a probability of pathogenicity for all VUS in the BRCA2 DBD, suggesting that the assay can be used in combination with other information to determine the cancer relevance of BRCA2 VUS.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Reparo do DNA/genética , Genes BRCA2 , Modelos Estatísticos , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Mutação de Sentido Incorreto , Curva ROC , Sensibilidade e Especificidade
10.
J Med Genet ; 49(10): 618-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23054243

RESUMO

BACKGROUND: Recently, rare germline variants in XRCC2 were detected in non-BRCA1/2 familial breast cancer cases, and a significant association with breast cancer was reported. However, the breast cancer risk associated with these variants needs further evaluation. METHODS: The coding regions and exon-intron boundaries of XRCC2 were scanned for mutations in an international cohort of 3548 non-BRCA1/2 familial breast cancer cases and 1435 healthy controls using various mutation scanning methods. Predictions on functional relevance of detected missense variants were obtained from three different prediction algorithms. RESULTS: The only protein-truncating variant detected was found in a control. Rare non-protein-truncating variants were detected in 20 familial cases (0.6%) and nine healthy controls (0.6%). Although the number of variants predicted to be damaging or neutral differed between prediction algorithms, in all instances these categories were evenly represented among cases and controls. CONCLUSIONS: Our data do not confirm an association between XRCC2 variants and breast cancer risk, although a relative risk smaller than two could not be excluded. Variants in XRCC2 are unlikely to explain a substantial proportion of familial breast cancer.


Assuntos
Alelos , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Mutação , Feminino , Humanos , Fases de Leitura Aberta
11.
J Med Genet ; 49(8): 525-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22889855

RESUMO

BACKGROUND: Clinical classification of rare sequence changes identified in the breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling of individuals carrying these variants. We previously showed that variant BRCA1 c.5096G>A p.Arg1699Gln in the BRCA1 transcriptional transactivation domain demonstrated equivocal results from a series of functional assays, and proposed that this variant may confer low to moderate risk of cancer. METHODS: Measures of genetic risk (report of family history, segregation) were assessed for 68 BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) families recruited through family cancer clinics, comparing results with 34 families carrying the previously classified pathogenic BRCA1 c.5095C>T p.Arg1699Trp (R1699W) mutation at the same residue, and to 243 breast cancer families with no BRCA1 pathogenic mutation (BRCA-X). RESULTS: Comparison of BRCA1 carrier prediction scores of probands using the BOADICEA risk prediction tool revealed that BRCA1 c.5096G>A p.Arg1699Gln variant carriers had family histories that were less 'BRCA1-like' than BRCA1 c.5095C>T p.Arg1699Trp mutation carriers (p<0.00001), but more 'BRCA1-like' than BRCA-X families (p=0.0004). Further, modified segregation analysis of the subset of 30 families with additional genotyping showed that BRCA1 c.5096G >A p.Arg1699Gln had reduced penetrance compared with the average truncating BRCA1 mutation penetrance (p=0.0002), with estimated cumulative risks to age 70 of breast or ovarian cancer of 24%. CONCLUSIONS: Our results provide substantial evidence that the BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) variant, demonstrating ambiguous functional deficiency across multiple assays, is associated with intermediate risk of breast and ovarian cancer, highlighting challenges for risk modelling and clinical management of patients of this and other potential moderate-risk variants.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Mutação , Neoplasias Ovarianas/genética , Idoso , Feminino , Predisposição Genética para Doença , Testes Genéticos , Técnicas de Genotipagem , Células HEK293 , Humanos , Funções Verossimilhança , Linhagem , Penetrância , Valor Preditivo dos Testes , Fatores de Risco , Ativação Transcricional
12.
Dev Cell ; 23(1): 137-52, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22771033

RESUMO

Disruption of the BRCA2 tumor suppressor is associated with structural and numerical chromosomal defects. The numerical abnormalities in BRCA2-deficient cells may partly result from aberrations in cell division caused by disruption of BRCA2 during cytokinesis. Here we show that BRCA2 is a component of the midbody that is recruited through an interaction with Filamin A actin-binding protein. At the midbody, BRCA2 influences the recruitment of endosomal sorting complex required for transport (ESCRT)-associated proteins, Alix and Tsg101, and formation of CEP55-Alix and CEP55-Tsg101 complexes during abscission. Disruption of these BRCA2 interactions by cancer-associated mutations results in increased cytokinetic defects but has no effect on BRCA2-dependent homologous recombination repair of DNA damage. These findings identify a specific role for BRCA2 in the regulation of midbody structure and function, separate from DNA damage repair, that may explain in part the whole-chromosomal instability in BRCA2-deficient tumors.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Contráteis/fisiologia , Citocinese/fisiologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Proteínas dos Microfilamentos/fisiologia , Proteínas Nucleares/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteína BRCA2/química , Proteína BRCA2/genética , Proteína BRCA2/fisiologia , Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Feminino , Filaminas , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Mutantes , Transporte Proteico/genética , Fatores de Transcrição
13.
BMC Cancer ; 12: 207, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646717

RESUMO

BACKGROUND: BRCA1 (breast cancer 1, early onset) missense mutations have been detected in familial breast and ovarian cancers, but the role of these variants in cancer predisposition is often difficult to ascertain. In this work, the molecular mechanisms affected in human cells by two BRCA1 missense variants, M1775R and A1789T, both located in the second BRCT (BRCA1 C Terminus) domain, have been investigated. Both these variants were isolated from familial breast cancer patients and the study of their effect on yeast cell transcriptome has previously provided interesting clues to their possible role in the pathogenesis of breast cancer. METHODS: We compared by Human Whole Genome Microarrays the expression profiles of HeLa cells transfected with one or the other variant and HeLa cells transfected with BRCA1 wild-type. Microarray data analysis was performed by three comparisons: M1775R versus wild-type (M1775RvsWT-contrast), A1789T versus wild-type (A1789TvsWT-contrast) and the mutated BRCT domain versus wild-type (MutvsWT-contrast), considering the two variants as a single mutation of BRCT domain. RESULTS: 201 differentially expressed genes were found in M1775RvsWT-contrast, 313 in A1789TvsWT-contrast and 173 in MutvsWT-contrast. Most of these genes mapped in pathways deregulated in cancer, such as cell cycle progression and DNA damage response and repair. CONCLUSIONS: Our results represent the first molecular evidence of the pathogenetic role of M1775R, already proposed by functional studies, and give support to a similar role for A1789T that we first hypothesized based on the yeast cell experiments. This is in line with the very recently suggested role of BRCT domain as the main effector of BRCA1 tumor suppressor activity.


Assuntos
Proteína BRCA1/genética , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Transcriptoma , Apoptose/genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Reparo do DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica/genética , Células HeLa , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais
14.
Hum Mutat ; 33(1): 8-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21990134

RESUMO

Clinical mutation screening of the BRCA1 and BRCA2 genes for the presence of germline inactivating mutations is used to identify individuals at elevated risk of breast and ovarian cancer. Variants identified during screening are usually classified as pathogenic (increased risk of cancer) or not pathogenic (no increased risk of cancer). However, a significant proportion of genetic tests yields variants of uncertain significance (VUS) that have undefined risk of cancer. Individuals carrying these VUS cannot benefit from individualized cancer risk assessment. Recently, a quantitative "posterior probability model" for assessing the clinical relevance of VUS in BRCA1 or BRCA2, which integrates multiple forms of genetic evidence has been developed. Here, we provide a detailed review of this model. We describe the components of the model and explain how these can be combined to calculate a posterior probability of pathogenicity for each VUS. We explain how the model can be applied to public data and provide tables that list the VUS that have been classified as not pathogenic or pathogenic using this method. While we use BRCA1 and BRCA2 VUS as examples, the method can be used as a framework for classification of the pathogenicity of VUS in other cancer genes.


Assuntos
Neoplasias da Mama/diagnóstico , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/diagnóstico , Adulto , Alelos , Neoplasias da Mama/genética , Códon , Éxons , Feminino , Testes Genéticos , Variação Genética , Humanos , Pessoa de Meia-Idade , Modelos Estatísticos , Neoplasias Ovarianas/genética , Probabilidade , Prognóstico , Fatores de Risco , Incerteza
15.
Hum Mutat ; 32(6): 678-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21394826

RESUMO

Clinical management of breast cancer families is complicated by identification of BRCA1 and BRCA2 sequence alterations of unknown significance. Molecular assays evaluating the effect of intronic variants on native splicing can help determine their clinical relevance. Twenty-six intronic BRCA1/2 variants ranging from the consensus dinucleotides in the splice acceptor or donor to 53 nucleotides into the intron were identified in multiple-case families. The effect of the variants on splicing was assessed using HSF matrices, MaxEntScan and NNsplice, followed by analysis of mRNA from lymphoblastoid cell lines. A total of 12 variants were associated with splicing aberrations predicted to result in production of truncated proteins, including a variant located 12 nucleotides into the intron. The posterior probability of pathogenicity was estimated using a multifactorial likelihood approach, and provided a pathogenic or likely pathogenic classification for seven of the 12 spliceogenic variants. The apparent disparity between experimental evidence and the multifactorial predictions is likely due to several factors, including a paucity of likelihood information and a nonspecific prior probability applied for intronic variants outside the consensus dinucleotides. Development of prior probabilities of pathogenicity incorporating bioinformatic prediction of splicing aberrations should improve identification of functionally relevant variants and enhance multifactorial likelihood analysis of intronic variants.


Assuntos
Processamento Alternativo , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Íntrons/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Biologia Computacional , Éxons/genética , Feminino , Variação Genética , Humanos , Mutação , RNA Mensageiro/genética
16.
Breast Cancer Res Treat ; 125(1): 265-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20737206

RESUMO

Many missense variants in BRCA1 are of unclear clinical significance. Functional and genetic approaches have been proposed for elucidating the clinical significance of such variants. The purpose of this study was to evaluate BRCA1 missense variants for their effect on both homologous recombination (HR) and non homologous end joining (NHEJ). HR frequency evaluation: HeLaG1 cells, containing a stably integrated plasmid that allows us to measure HR events by gene conversion events, were transfected with the pcDNA3ß expression vector containing the BRCA1-wild-type (BRCA1 wild type) or the BRCA1-unclassified variants (BRCA1-UCVs). The NHEJ was measured by a random plasmid integration assay. The assays suggested a BRCA1 involvement mainly in the NHEJ. As a matter of fact, the Y179C and the A1789T variant significantly altered the NHEJ activity as compared to the wild type, suggesting that they may be related to BRCA1-associated pathogenicity by affecting this function. The variants N550H and I1766S, and the mutation M1775R did not alter the NHEJ frequency. These data, besides proposing a method for the study of BRCA1 variants' effect on HR and NHEJ, highlighted the need for a range of functional assays to be performed to identify variants with altered function.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Mutação de Sentido Incorreto , Recombinação Genética , Feminino , Predisposição Genética para Doença , Células HeLa , Humanos , Transfecção
17.
Eur J Cancer ; 45(12): 2187-96, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19493677

RESUMO

Germline mutations in breast cancer susceptibility gene 1 (BRCA1) confer high risk of developing breast and ovarian cancers. Even though most BRCA1 cancer-predisposing mutations produce a non-functional truncated protein, 5-10% of them cause single amino acid substitutions. This second type of mutations represents a useful tool for examining BRCA1 molecular functions. Human BRCA1 inhibits cell proliferation in transformed Saccharomyces cerevisiae cells and this effect is abolished by disease-associated mutations in the BRCT domain. Moreover, BRCA1 mutations located both inside and outside the BRCT domain may induce an increase in the homologous recombination frequency in yeast cells. Here we present a microarray analysis of gene expression induced in yeast cells transformed with five BRCA1 missense variants, in comparison with gene expression induced by wild-type BRCA1. Data analysis was performed by grouping the BRCA1 variants into three sets: Recombination (R)-set (Y179C and S1164I), Recombination and Proliferation (RP)-set (I1766S and M1775R) and Proliferation (P)-set (A1789T), according to their effects on yeast cell phenotype. We found 470, 740 and 1136 differentially expressed genes in R-, P- and RP-set, respectively. Our results point to some molecular mechanisms critical for the control of cell proliferation and of genome integrity providing support to a possible pathogenic role of the analysed mutations. They also confirm that yeast, despite the absence of a BRCA1 homologue, represents a valid model system to examine BRCA1 molecular functions, as the molecular pathways activated by BRCA1 variants are conserved in humans.


Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa/genética , Mutação de Sentido Incorreto/genética , Saccharomyces cerevisiae/genética , Proteína BRCA1/metabolismo , Western Blotting , Proliferação de Células , Feminino , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/metabolismo
18.
Hum Mutat ; 30(1): 123-33, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18680205

RESUMO

The BRCA1 tumor suppressor gene is found mutated in familial breast cancer. Although many of the mutations are clearly pathological because they give rise to truncated proteins, several missense variants of uncertain pathological consequences have been identified. A novel functional assay to screen for BRCA1 missense variants in a simple genetic system could be very useful for the identification of potentially deleterious mutations. By using two prediction computer programs, Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen), seven nonsynonymous missense BRCA1 variants likely disrupting the gene function were selected as potentially deleterious. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) was used to test these cancer-related missense mutations for their ability to affect cell growth and homologous recombination (HR) at the HIS3 and ADE2 loci. The variants localized in the BRCA1 C-Terminus (BRCT) domain did not show any growth inhibition when overexpressed in agreement with previous results. Overexpression of either wild-type BRCA1 or two neutral missense variants did not increase yeast HR but when cancer-related variants were overexpressed a significant increase in recombination was observed. Results clearly showed that this genetic system can be useful to discriminate between neutral and deleterious BRCA1 missense variants.


Assuntos
Proteína BRCA1/genética , Análise Mutacional de DNA/métodos , Variação Genética , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Neoplasias da Mama/genética , Feminino , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Fenótipo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA