Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(10): e0007742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589617

RESUMO

Paracoccidioides spp. are thermodimorphic fungi that cause a neglected tropical disease (paracoccidioidomycosis) that is endemic to Latin America. These fungi inhabit the soil, where they live as saprophytes with no need for a mammalian host to complete their life cycle. Despite this, they developed sophisticated virulence attributes allowing them not only to survive in host tissues but also to cause disease. A hypothesis for selective pressures driving the emergence or maintenance of virulence of soil fungi is their interaction with soil predators such as amoebae and helminths. We evaluated the presence of environmental amoeboid predators in soil from armadillo burrows where Paracoccidioides had been previously detected and tested if the interaction of Paracoccidioides with amoebae selects for fungi with increased virulence. Nematodes, ciliates, and amoebae-all potential predators of fungi-grew in cultures from soil samples. Microscopical observation and ITS sequencing identified the amoebae as Acanthamoeba spp, Allovahlkampfia spelaea, and Vermamoeba vermiformis. These three amoebae efficiently ingested, killed and digested Paracoccidioides spp. yeast cells, as did laboratory adapted axenic Acanthamoeba castellanii. Sequential co-cultivation of Paracoccidioides with A. castellanii selected for phenotypical traits related to the survival of the fungus within a natural predator as well as in murine macrophages and in vivo (Galleria mellonella and mice). These changes in virulence were linked to the accumulation of cell wall alpha-glucans, polysaccharides that mask recognition of fungal molecular patterns by host pattern recognition receptors. Altogether, our results indicate that Paracoccidioides inhabits a complex environment with multiple amoeboid predators that can exert selective pressure to guide the evolution of virulence traits.


Assuntos
Amoeba/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paracoccidioides/fisiologia , Microbiologia do Solo , Acanthamoeba castellanii/fisiologia , Amoeba/citologia , Amoeba/microbiologia , Animais , Tatus , Cilióforos , Técnicas de Cocultura , Modelos Animais de Doenças , Fungos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nematoides , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Fagocitose , Solo , Virulência , Fatores de Virulência/fisiologia
2.
Int J Antimicrob Agents ; 49(2): 167-175, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28108242

RESUMO

Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of micro-organisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 µM in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 µM). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 µM and 2.90 µM, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 µM and 15.3 µM, respectively, for C. albicans, and 11 µM and 22.70 µM, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Peptídeos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Venenos de Vespas/farmacologia , Vespas/química , Administração Tópica , Animais , Anti-Infecciosos/isolamento & purificação , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos Peritoneais/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos/isolamento & purificação , Resultado do Tratamento , Venenos de Vespas/isolamento & purificação
3.
Virulence ; 8(1): 41-52, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294852

RESUMO

The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.


Assuntos
Candida albicans/citologia , Candida albicans/patogenicidade , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Regulação Fúngica da Expressão Gênica , Hifas/imunologia , Hifas/patogenicidade , Hifas/fisiologia , Evasão da Resposta Imune , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA