Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(11): 109249, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133916

RESUMO

Cortical GABAergic interneurons are generated in large numbers in the ganglionic eminences and migrate into the cerebral cortex during embryogenesis. At early postnatal stages, during neuronal circuit maturation, autonomous and activity-dependent mechanisms operate within the cortex to adjust cell numbers by eliminating naturally occurring neuron excess. Here, we show that when cortical interneurons are generated in aberrantly high numbers-due to a defect in precursor cell proliferation during embryogenesis-extra parvalbumin interneurons persist in the postnatal mouse cortex during critical periods of cortical network maturation. Even though cell numbers are subsequently normalized, behavioral abnormalities remain in adulthood. This suggests that timely clearance of excess cortical interneurons is critical for correct functional maturation of circuits that drive adult behavior.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Interneurônios/patologia , Animais , Animais Recém-Nascidos , Contagem de Células , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Parvalbuminas/metabolismo
2.
Neuropathol Appl Neurobiol ; 47(6): 781-795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797808

RESUMO

AIMS: We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell-cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS: Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS: We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS: Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell-cell interactions and cellular heterogeneity in developmental neuropathology.


Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Transdução de Sinais/fisiologia , Esclerose Tuberosa/metabolismo , Encéfalo/patologia , Deficiências do Desenvolvimento/patologia , Humanos , Imuno-Histoquímica , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
3.
Nat Neurosci ; 24(2): 225-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349709

RESUMO

Neural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1). Through intravital imaging of NSCs and their progeny, we identify a population of Gli1-targeted NSCs showing long-term self-renewal in the adult hippocampus. In contrast, once activated, Ascl1-targeted NSCs undergo limited proliferative activity before they become exhausted. Using single-cell RNA sequencing, we show that Gli1- and Ascl1-targeted cells have highly similar yet distinct transcriptional profiles, supporting the existence of heterogeneous NSC populations with diverse behavioral properties. Thus, we here identify long-term self-renewing NSCs that contribute to the generation of new neurons in the adult hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Feminino , Perfilação da Expressão Gênica , Hipocampo/citologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Microscopia Intravital , Masculino , Metalotioneína 3 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Regeneração Nervosa , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Análise de Célula Única , Proteína GLI1 em Dedos de Zinco/biossíntese , Proteína GLI1 em Dedos de Zinco/genética
4.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32467237

RESUMO

Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. During thymus organogenesis, these functionally distinct sub-lineages are thought to arise from a common thymic epithelial progenitor cell (TEPC). However, the mechanisms controlling cTEC and mTEC production from the common TEPC are not understood. Here, we show that emergence of the earliest mTEC lineage-restricted progenitors requires active NOTCH signaling in progenitor TEC and that, once specified, further mTEC development is NOTCH independent. In addition, we demonstrate that persistent NOTCH activity favors maintenance of undifferentiated TEPCs at the expense of cTEC differentiation. Finally, we uncover a cross-regulatory relationship between NOTCH and FOXN1, a master regulator of TEC differentiation. These data establish NOTCH as a potent regulator of TEPC and mTEC fate during fetal thymus development, and are thus of high relevance to strategies aimed at generating/regenerating functional thymic tissue in vitro and in vivo.


Assuntos
Desenvolvimento Embrionário/genética , Receptores Notch/metabolismo , Timo/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mutação com Ganho de Função , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Organogênese , Receptores Notch/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento
5.
Neuron ; 103(6): 1096-1108.e4, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31353074

RESUMO

During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.


Assuntos
Autorrenovação Celular/genética , Repressão Epigenética/genética , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Sirtuína 1/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Código das Histonas , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA-Seq , Receptores Notch/metabolismo , Transdução de Sinais/genética , Via de Sinalização Wnt/genética
6.
Science ; 353(6296): 292-5, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418510

RESUMO

Quiescence is essential for long-term maintenance of adult stem cells. Niche signals regulate the transit of stem cells from dormant to activated states. Here, we show that the E3-ubiquitin ligase Huwe1 (HECT, UBA, and WWE domain-containing 1) is required for proliferating stem cells of the adult mouse hippocampus to return to quiescence. Huwe1 destabilizes proactivation protein Ascl1 (achaete-scute family bHLH transcription factor 1) in proliferating hippocampal stem cells, which prevents accumulation of cyclin Ds and promotes the return to a resting state. When stem cells fail to return to quiescence, the proliferative stem cell pool becomes depleted. Thus, long-term maintenance of hippocampal neurogenesis depends on the return of stem cells to a transient quiescent state through the rapid degradation of a key proactivation factor.


Assuntos
Células-Tronco Adultas/fisiologia , Hipocampo/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese , Ubiquitina-Proteína Ligases/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Hipocampo/citologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
7.
J Neurosci ; 36(15): 4339-50, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076429

RESUMO

The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT: The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Calbindinas/metabolismo , Diferenciação Celular/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação/genética , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Neuroglia/fisiologia , Gravidez , Neurônios Serotoninérgicos/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
8.
Nat Commun ; 5: 3405, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24572910

RESUMO

A transcriptional programme initiated by the proneural factors Neurog2 and Ascl1 controls successive steps of neurogenesis in the embryonic cerebral cortex. Previous work has shown that proneural factors also confer a migratory behaviour to cortical neurons by inducing the expression of the small GTP-binding proteins such as Rnd2 and Rnd3. However, the directionality of radial migration suggests that migrating neurons also respond to extracellular signal-regulated pathways. Here we show that the Plexin B2 receptor interacts physically and functionally with Rnd3 and stimulates RhoA activity in migrating cortical neurons. Plexin B2 competes with p190RhoGAP for binding to Rnd3, thus blocking the Rnd3-mediated inhibition of RhoA and also recruits RhoGEFs to directly stimulate RhoA activity. Thus, an interaction between the cell-extrinsic Plexin signalling pathway and the cell-intrinsic Ascl1-Rnd3 pathway determines the level of RhoA activity appropriate for cortical neuron migration.


Assuntos
Movimento Celular , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Western Blotting , Células COS , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Hibridização In Situ , Camundongos , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Ligação Proteica , Interferência de RNA , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
9.
Cell Rep ; 4(3): 477-91, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23891001

RESUMO

FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3, the FOXO isoform associated with exceptional human longevity, preserves adult neural stem cell pools. Here, we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs). Interestingly, FOXO3-bound sites are enriched for motifs for bHLH transcription factors, and FOXO3 shares common targets with the proneuronal bHLH transcription factor ASCL1/MASH1 in NPCs. Analysis of the chromatin landscape reveals that FOXO3 and ASCL1 are particularly enriched at the enhancers of genes involved in neurogenic pathways. Intriguingly, FOXO3 inhibits ASCL1-dependent neurogenesis in NPCs and direct neuronal conversion in fibroblasts. FOXO3 also restrains neurogenesis in vivo. Our study identifies a genome-wide interaction between the prolongevity transcription factor FOXO3 and the cell-fate determinant ASCL1 and raises the possibility that FOXO3's ability to restrain ASCL1-dependent neurogenesis may help preserve the neural stem cell pool.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Genoma , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
10.
Nucleic Acids Res ; 41(11): 5555-68, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23595148

RESUMO

Accurately characterizing transcription factor (TF)-DNA affinity is a central goal of regulatory genomics. Although thermodynamics provides the most natural language for describing the continuous range of TF-DNA affinity, traditional motif discovery algorithms focus instead on classification paradigms that aim to discriminate 'bound' and 'unbound' sequences. Moreover, these algorithms do not directly model the distribution of tags in ChIP-seq data. Here, we present a new algorithm named Thermodynamic Modeling of ChIP-seq (TherMos), which directly estimates a position-specific binding energy matrix (PSEM) from ChIP-seq/exo tag profiles. In cross-validation tests on seven genome-wide TF-DNA binding profiles, one of which we generated via ChIP-seq on a complex developing tissue, TherMos predicted quantitative TF-DNA binding with greater accuracy than five well-known algorithms. We experimentally validated TherMos binding energy models for Klf4 and Esrrb, using a novel protocol to measure PSEMs in vitro. Strikingly, our measurements revealed strong non-additivity at multiple positions within the two PSEMs. Among the algorithms tested, only TherMos was able to model the entire binding energy landscape of Klf4 and Esrrb. Our study reveals new insights into the energetics of TF-DNA binding in vivo and provides an accurate first-principles approach to binding energy inference from ChIP-seq and ChIP-exo data.


Assuntos
Algoritmos , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mutação , Ligação Proteica , Receptores de Estrogênio/metabolismo , Análise de Sequência de DNA , Termodinâmica
11.
Nat Commun ; 4: 1635, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23535656

RESUMO

The generation of neurons by neural stem cells is a highly choreographed process that requires extensive and dynamic remodelling of the cytoskeleton at each step of the process. The atypical RhoGTPase Rnd3 is expressed by progenitors in the embryonic brain but its role in early steps of neurogenesis has not been addressed. Here we show that silencing Rnd3 in the embryonic cerebral cortex interferes with the interkinetic nuclear migration of radial glial stem cells, disrupts their apical attachment and modifies the orientation of their cleavage plane. These defects are rescued by co-expression of a constitutively active form of cofilin, demonstrating that Rnd3-mediated disassembly of actin filaments coordinates the cellular behaviour of radial glial. Rnd3 also limits the divisions of basal progenitors via a distinct mechanism involving the suppression of cyclin D1 translation. Interestingly, although Rnd3 expression is controlled transcriptionally by Ascl1, this proneural factor is itself required in radial glial progenitors only for proper orientation of cell divisions.


Assuntos
Actinas/fisiologia , Neurogênese/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Proliferação de Células , Ciclina D1/fisiologia , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
J Neurosci ; 32(47): 16651-65, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175820

RESUMO

The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Neurônios Motores/fisiologia , Células Piramidais/fisiologia , Tratos Piramidais/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Comportamento Animal/fisiologia , Proliferação de Células , Células Cultivadas , Imunofluorescência , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Microscopia Confocal , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Proteína Quinase C/metabolismo , Tratos Piramidais/citologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Development ; 139(13): 2308-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22669821

RESUMO

By serving as the sole output of the cerebellar cortex, integrating a myriad of afferent stimuli, Purkinje cells (PCs) constitute the principal neuron in cerebellar circuits. Several neurodegenerative cerebellar ataxias feature a selective cell-autonomous loss of PCs, warranting the development of regenerative strategies. To date, very little is known as to the regulatory cascades controlling PC development. During central nervous system development, the proneural gene neurogenin 2 (Neurog2) contributes to many distinct neuronal types by specifying their fate and/or dictating development of their morphological features. By analyzing a mouse knock-in line expressing Cre recombinase under the control of Neurog2 cis-acting sequences we show that, in the cerebellar primordium, Neurog2 is expressed by cycling progenitors cell-autonomously fated to become PCs, even when transplanted heterochronically. During cerebellar development, Neurog2 is expressed in G1 phase by progenitors poised to exit the cell cycle. We demonstrate that, in the absence of Neurog2, both cell-cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. Although PC fate identity is correctly specified, the maturation of their dendritic arbor is severely affected in the absence of Neurog2, as null PCs develop stunted and poorly branched dendrites, a defect evident from the early stages of dendritogenesis. Thus, Neurog2 represents a key regulator of PC development and maturation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ciclo Celular , Cerebelo/crescimento & desenvolvimento , Dendritos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células de Purkinje/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Cerebelo/fisiologia , Feminino , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Gravidez , Transplante de Células-Tronco , Células-Tronco/fisiologia
14.
Development ; 138(12): 2543-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21610031

RESUMO

The decision of a neural precursor to stop dividing and begin its terminal differentiation at the correct place, and at the right time, is a crucial step in the generation of cell diversity in the nervous system. Here, we show that the Down's syndrome candidate gene (Mnb/Dyrk1a) is transiently expressed in prospective neurons of vertebrate CNS neuroepithelia. The gain of function (GoF) of Mnb/Dyrk1a induced proliferation arrest. Conversely, its loss of function (LoF) caused over proliferation and cell death. We found that MNB/DYRK1A is both necessary and sufficient to upregulate, at transcriptional level, the expression of the cyclin-dependent kinase inhibitor p27(KIP1) in the embryonic chick spinal cord and mouse telencephalon, supporting a regulatory role for MNB/DYRK1A in cell cycle exit of vertebrate CNS neurons. All these actions required the kinase activity of MNB/DYRK1A. We also observed that MNB/DYRK1A is co-expressed with the NOTCH ligand Delta1 in single neuronal precursors. Furthermore, we found that MNB/DYRK1A suppressed NOTCH signaling, counteracted the pro-proliferative action of the NOTCH intracellular domain (NICD), stimulated Delta1 expression and was required for the neuronal differentiation induced by the decrease in NOTCH signaling. Nevertheless, although Mnb/Dyrk1a GoF led to extensive withdrawal of neuronal precursors from the cell cycle, it was insufficient to elicit their differentiation. Remarkably, a transient (ON/OFF) Mnb/Dyrk1a GoF efficiently induced neuronal differentiation. We propose that the transient expression of MNB/DYRK1A in neuronal precursors acts as a binary switch, coupling the end of proliferation and the initiation of neuronal differentiation by upregulating p27KIP1 expression and suppressing NOTCH signaling.


Assuntos
Ciclo Celular , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteínas de Drosophila/genética , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Animais , Galinhas , Drosophila melanogaster , Células PC12 , Ratos , Receptores Notch/metabolismo , Ativação Transcricional , Quinases Dyrk
15.
Genes Dev ; 25(9): 930-45, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536733

RESUMO

Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Telencéfalo/citologia , Telencéfalo/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Camundongos , Gravidez
16.
Cereb Cortex ; 21(7): 1695-702, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21127017

RESUMO

Vascular-specific growth factor angiopoietin-2 (Ang2) is mainly involved during vascular network setup. Recently, Ang2 was suggested to play a role in adult neurogenesis, affecting migration and differentiation of adult neuroblasts in vitro. However, to date, no data have reported an effect of Ang2 on neurogenesis during embryonic development. As we detected Ang2 expression in the developing cerebral cortex at embryonic day E14.5 and E16.5, we used in utero electroporation to knock down Ang2 expression in neuronal progenitors located in the cortical ventricular zone (VZ) to examine the role of Ang2 in cortical embryonic neurogenesis. Using this strategy, we showed that radial migration from the VZ toward the cortical plate of Ang2-knocked down neurons is altered as well as their morphology. In parallel, we observed a perturbation of intermediate progenitor population and the surrounding vasculature. Taken together, our results show for the first time that, in addition to its role during brain vasculature setup, Ang2 is also involved in embryonic cortical neurogenesis and especially in the radial migration of projection neurons.


Assuntos
Angiopoietina-2/fisiologia , Neurogênese/fisiologia , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Angiopoietina-2/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes/métodos , Camundongos , Neurogênese/genética , Neurônios/citologia , Neurônios/fisiologia , Gravidez , Telencéfalo/irrigação sanguínea
17.
Proc Natl Acad Sci U S A ; 107(44): 18886-91, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956305

RESUMO

The proper function of the bone morphogenic protein (BMP) pathway during embryonic development and organ maintenance requires its communication with other signaling pathways. Unlike the well-documented regulation of the BMP pathway by FGF/MAPK and Wnt/GSK3 signals, cross-talk between BMP/Smad and retinoic acid (RA)/RA receptor (RAR) pathways is poorly understood. Here, we show that RA represses BMP signal duration by reducing the level of phosphorylated Smad1 (pSmad1). Through its nuclear receptor-mediated transcription, RA enhances the interaction between pSmad1 and its ubiquitin E3 ligases, thereby promoting pSmad1 ubiquitination and proteasomal degradation. This regulation depends on the RA-increased Gadd45 expression and MAPK activation. During the neural development in chicken embryo, the RA/RAR pathway also suppresses BMP signaling to antagonize BMP-regulated proliferation and differentiation of neural progenitor cells. Furthermore, this cross-talk between RA and BMP pathways is involved in the proper patterning of dorsal neural tube of chicken embryo. Our results reveal a mechanism by which RA suppresses BMP signaling through regulation of pSmad1 stability.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Tretinoína/metabolismo , Ubiquitinação/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Embrião de Galinha , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Tubo Neural/embriologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Proteína Smad1/genética , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
Development ; 137(2): 293-302, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040495

RESUMO

Cajal-Retzius (CR) cells play a key role in the formation of the cerebral cortex. These pioneer neurons are distributed throughout the cortical marginal zone in distinct graded distributions. Fate mapping and cell lineage tracing studies have recently shown that CR cells arise from restricted domains of the pallial ventricular zone, which are associated with signalling centres involved in the early regionalisation of the telencephalic vesicles. In this study, we identified a subpopulation of CR cells in the rostral telencephalon that expresses Er81, a downstream target of Fgf8 signalling. We investigated the role of the rostral telencephalic patterning centre, which secretes FGF molecules, in the specification of these cells. Using pharmacological inhibitors and genetic inactivation of Fgf8, we showed that production of Fgf8 by the rostral telencephalic signalling centre is required for the specification of the Er81+ CR cell population. Moreover, the analysis of Fgf8 gain-of-function in cultivated mouse embryos and of Emx2 and Gli3 mutant embryos revealed that ectopic Fgf8 signalling promotes the generation of CR cells with a rostral phenotype from the dorsal pallium. These data showed that Fgf8 signalling is both required and sufficient to induce rostral CR cells. Together, our results shed light on the mechanisms specifying rostral CR cells and further emphasise the crucial role of telencephalic signalling centres in the generation of distinct CR cell populations.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Telencéfalo/citologia , Telencéfalo/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Gli3 com Dedos de Zinco
19.
Nat Neurosci ; 12(10): 1229-37, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19749747

RESUMO

An important feature of the cerebral cortex is its layered organization, which is modulated in an area-specific manner. We found that the transcription factor AP2gamma regulates laminar fate in a region-specific manner. Deletion of AP2gamma (also known as Tcfap2c) during development resulted in a specific reduction of upper layer neurons in the occipital cortex, leading to impaired function and enhanced plasticity of the adult visual cortex. AP2gamma functions in apical progenitors, and its absence resulted in mis-specification of basal progenitors in the occipital cortex at the time at which upper layer neurons were generated. AP2gamma directly regulated the basal progenitor fate determinants Math3 (also known as Neurod4) and Tbr2, and its overexpression promoted the generation of layer II/III neurons in a time- and region-specific manner. Thus, AP2gamma acts as a regulator of basal progenitor fate, linking regional and laminar specification in the mouse developing cerebral cortex.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral , Células-Tronco Embrionárias/fisiologia , Neurogênese/fisiologia , Fator de Transcrição AP-2/fisiologia , Adulto , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Linhagem Celular Transformada , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Embrião de Mamíferos , Potenciais Evocados Visuais/genética , Potenciais Evocados Visuais/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feto , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Antígeno Ki-67/metabolismo , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Estimulação Luminosa/métodos , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Transfecção/métodos , Proteínas Supressoras de Tumor/genética
20.
Dev Cell ; 17(2): 210-21, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19686682

RESUMO

Self-renewal and proliferation of neural stem cells and the decision to initiate neurogenesis are crucial events directing brain development. Here we show that the ubiquitin ligase Huwe1 operates upstream of the N-Myc-DLL3-Notch pathway to control neural stem cell activity and promote neurogenesis. Conditional inactivation of the Huwe1 gene in the mouse brain caused neonatal lethality associated with disorganization of the laminar patterning of the cortex. These defects stemmed from severe impairment of neurogenesis associated with uncontrolled expansion of the neural stem cell compartment. Loss- and gain-of-function experiments in the mouse cortex demonstrated that Huwe1 restrains proliferation and enables neuronal differentiation by suppressing the N-Myc-DLL3 cascade. Notably, human high-grade gliomas carry focal hemizygous deletions of the X-linked Huwe1 gene in association with amplification of the N-myc locus. Our results indicate that Huwe1 balances proliferation and neurogenesis in the developing brain and that this pathway is subverted in malignant brain tumors.


Assuntos
Encéfalo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células-Tronco/citologia , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA