Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 18(1): 146, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670397

RESUMO

BACKGROUND: The interest in MR-only workflows is growing with the introduction of artificial intelligence in the synthetic CT generators converting MR images into CT images. The aim of this study was to evaluate several commercially available sCT generators for two anatomical localizations. METHODS: Four sCT generators were evaluated: one based on the bulk density method and three based on deep learning methods. The comparison was performed on large patient cohorts (brain: 42 patients and pelvis: 52 patients). It included geometric accuracy with the evaluation of Hounsfield Units (HU) mean error (ME) for several structures like the body, bones and soft tissues. Dose evaluation included metrics like the Dmean ME for bone structures (skull or femoral heads), PTV and soft tissues (brain or bladder or rectum). A 1%/1 mm gamma analysis was also performed. RESULTS: HU ME in the body were similar to those reported in the literature. Dmean ME were smaller than 2% for all structures. Mean gamma pass rate down to 78% were observed for the bulk density method in the brain. Performances of the bulk density generator were generally worse than the artificial intelligence generators for the brain but similar for the pelvis. None of the generators performed best in all the metrics studied. CONCLUSIONS: All four generators can be used in clinical practice to implement a MR-only workflow but the bulk density method clearly performed worst in the brain.


Assuntos
Inteligência Artificial , Próstata , Masculino , Humanos , Fluxo de Trabalho , Encéfalo , Pelve , Tomografia Computadorizada por Raios X
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4736-4739, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086627

RESUMO

In metastatic breast cancer, bone metastases are prevalent and associated with multiple complications. Assessing their response to treatment is therefore crucial. Most deep learning methods segment or detect lesions on a single acquisition while only a few focus on longitudinal studies. In this work, 45 patients with baseline (BL) and follow-up (FU) images recruited in the context of the EPICUREseinmeta study were analyzed. The aim was to determine if a network trained for a particular timepoint can generalize well to another one, and to explore different improvement strategies. Four networks based on the same 3D U-Net framework to segment bone lesions on BL and FU images were trained with different strategies and compared. These four networks were trained 1) only with BL images 2) only with FU images 3) with both BL and FU images 4) only with FU images but with BL images and bone lesion segmentations registered as input channels. With the obtained segmentations, we computed the PET Bone Index (PBI) which assesses the bone metastases burden of patients and we analyzed its potential for treatment response evaluation. Dice scores of 0.53, 0.55, 0.59 and 0.62 were respectively obtained on FU acquisitions. The under-performance of the first and third networks may be explained by the lower SUV uptake due to treatment response in FU images compared to BL images. The fourth network gives better results than the second network showing that the addition of BL PET images and bone lesion segmentations as prior knowledge has its importance. With an AUC of 0.86, the difference of PBI between two acquisitions could be used to assess treatment response. Clinical relevance- To assess the response to treatment of bone metastases, it is crucial to detect and segment them on several acquisitions from a same patient. We proposed a completely automatic method to detect and segment these metastases on longitudinal 18F-FDG PET/CT images in the context of metastatic breast cancer. We also proposed an automatic PBI to quantitatively assess the evolution of the bone metastases burden of patient and to automatically evaluate their response to treatment.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons
3.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158904

RESUMO

(1) Background: triple-negative breast cancer (TNBC) remains a clinical and therapeutic challenge primarily affecting young women with poor prognosis. TNBC is currently treated as a single entity but presents a very diverse profile in terms of prognosis and response to treatment. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose ([18F]FDG) is gaining importance for the staging of breast cancers. TNBCs often show high [18F]FDG uptake and some studies have suggested a prognostic value for metabolic and volumetric parameters, but no study to our knowledge has examined textural features in TNBC. The objective of this study was to evaluate the association between metabolic, volumetric and textural parameters measured at the initial [18F]FDG PET/CT and disease-free survival (DFS) and overall survival (OS) in patients with nonmetastatic TBNC. (2) Methods: all consecutive nonmetastatic TNBC patients who underwent a [18F]FDG PET/CT examination upon diagnosis between 2012 and 2018 were retrospectively included. The metabolic and volumetric parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG) and the textural features (entropy, homogeneity, SRE, LRE, LGZE, and HGZE) of the primary tumor were collected. (3) Results: 111 patients were enrolled (median follow-up: 53.6 months). In the univariate analysis, high TLG, MTV and entropy values of the primary tumor were associated with lower DFS (p = 0.008, p = 0.006 and p = 0.025, respectively) and lower OS (p = 0.002, p = 0.001 and p = 0.046, respectively). The discriminating thresholds for two-year DFS were calculated as 7.5 for MTV, 55.8 for TLG and 2.6 for entropy. The discriminating thresholds for two-year OS were calculated as 9.3 for MTV, 57.4 for TLG and 2.67 for entropy. In the multivariate analysis, lymph node involvement in PET/CT was associated with lower DFS (p = 0.036), and the high MTV of the primary tumor was correlated with lower OS (p = 0.014). (4) Conclusions: textural features associated with metabolic and volumetric parameters of baseline [18F]FDG PET/CT have a prognostic value for identifying high-relapse-risk groups in early TNBC patients.

4.
Cancers (Basel) ; 14(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35008265

RESUMO

Metastatic breast cancer patients receive lifelong medication and are regularly monitored for disease progression. The aim of this work was to (1) propose networks to segment breast cancer metastatic lesions on longitudinal whole-body PET/CT and (2) extract imaging biomarkers from the segmentations and evaluate their potential to determine treatment response. Baseline and follow-up PET/CT images of 60 patients from the EPICUREseinmeta study were used to train two deep-learning models to segment breast cancer metastatic lesions: One for baseline images and one for follow-up images. From the automatic segmentations, four imaging biomarkers were computed and evaluated: SULpeak, Total Lesion Glycolysis (TLG), PET Bone Index (PBI) and PET Liver Index (PLI). The first network obtained a mean Dice score of 0.66 on baseline acquisitions. The second network obtained a mean Dice score of 0.58 on follow-up acquisitions. SULpeak, with a 32% decrease between baseline and follow-up, was the biomarker best able to assess patients' response (sensitivity 87%, specificity 87%), followed by TLG (43% decrease, sensitivity 73%, specificity 81%) and PBI (8% decrease, sensitivity 69%, specificity 69%). Our networks constitute promising tools for the automatic segmentation of lesions in patients with metastatic breast cancer allowing treatment response assessment with several biomarkers.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1532-1535, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018283

RESUMO

18FDG PET/CT imaging is commonly used in diagnosis and follow-up of metastatic breast cancer, but its quantitative analysis is complicated by the number and location heterogeneity of metastatic lesions. Considering that bones are the most common location among metastatic sites, this work aims to compare different approaches to segment the bones and bone metastatic lesions in breast cancer.Two deep learning methods based on U-Net were developed and trained to segment either both bones and bone lesions or bone lesions alone on PET/CT images. These methods were cross-validated on 24 patients from the prospective EPICUREseinmeta metastatic breast cancer study and were evaluated using recall and precision to measure lesion detection, as well as the Dice score to assess bones and bone lesions segmentation accuracy.Results show that taking into account bone information in the training process allows to improve the precision of the lesions detection as well as the Dice score of the segmented lesions. Moreover, using the obtained bone and bone lesion masks, we were able to compute a PET bone index (PBI) inspired by the recognized Bone Scan Index (BSI). This automatically computed PBI globally agrees with the one calculated from ground truth delineations.Clinical relevance- We propose a completely automatic deep learning based method to detect and segment bones and bone lesions on 18FDG PET/CT in the context of metastatic breast cancer. We also introduce an automatic PET bone index which could be incorporated in the monitoring and decision process.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Fluordesoxiglucose F18 , Neoplasias da Mama/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Tomografia Computadorizada por Raios X
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1536-1539, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018284

RESUMO

Semi-automatic measurements are performed on 18FDG PET-CT images to monitor the evolution of metastatic sites in the clinical follow-up of metastatic breast cancer patients. Apart from being time-consuming and prone to subjective approximation, semi-automatic tools cannot make the difference between cancerous regions and active organs, presenting a high 18FDG uptake.In this work, we combine a deep learning-based approach with a superpixel segmentation method to segment the main active organs (brain, heart, bladder) from full-body PET images. In particular, we integrate a superpixel SLIC algorithm at different levels of a convolutional network. Results are compared with a deep learning segmentation network alone. The methods are cross-validated on full-body PET images of 36 patients and tested on the acquisitions of 24 patients from a different study center, in the context of the ongoing EPICUREseinmeta study. The similarity between the manually defined organ masks and the results is evaluated with the Dice score. Moreover, the amount of false positives is evaluated through the positive predictive value (PPV).According to the computed Dice scores, all approaches allow to accurately segment the target organs. However, the networks integrating superpixels are better suited to transfer knowledge across datasets acquired on multiple sites (domain adaptation) and are less likely to segment structures outside of the target organs, according to the PPV.Hence, combining deep learning with superpixels allows to segment organs presenting a high 18FDG uptake on PET images without selecting cancerous lesion, and thus improves the precision of the semi-automatic tools monitoring the evolution of breast cancer metastasis.Clinical relevance- We demonstrate the utility of combining deep learning and superpixel segmentation methods to accurately find the contours of active organs from metastatic breast cancer images, to different dataset distributions.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Algoritmos , Encéfalo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Humanos , Metástase Neoplásica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
7.
Cancers (Basel) ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527039

RESUMO

Due to the heterogeneity of tumour mass segmentation methods and lack of consensus, our study evaluated the prognostic value of pretherapeutic positron emission tomography with fluorodeoxyglucose (FDG-PET) metabolic parameters using different segmentation methods in patients with localized anal squamous cell carcinoma (SCC). Eighty-one patients with FDG-PET before radiochemotherapy were retrospectively analyzed. Semiquantitative data were measured with three fixed thresholds (35%, 41% and 50% of Maximum Standardized Uptake Value (SUVmax)) and four segmentation methods based on iterative approaches (Black, Adaptive, Nestle and Fitting). Metabolic volumes of primary anal tumour (P-MTV) and total tumour load (T-MTV: P-MTV+ lymph node MTV) were calculated. The primary endpoint was event-free survival (EFS). Seven multivariate models were created to compare FDG-PET tumour volumes prognostic impact. For all segmentation thresholds, PET metabolic volume parameters were independent prognostic factor and T-MTV variable was consistently better associated with EFS than P-MTV. Patient's sex was an independent variable and significantly correlated with EFS. With fixed threshold segmentation methods, 35% of SUVmax threshold seemed better correlated with EFS and the best cut-off for discrimination between a low and high risk of event occurrence was 40 cm3. Determination of T-MTV by FDG-PET using fixed threshold segmentation is useful for predicting EFS for primary anal SCC. If these data are confirmed in larger studies, FDG-PET could contribute to individualized patient therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA