Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38256866

RESUMO

The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines 12 and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines 13 are reported here in six steps starting from various halogeno-quinazoline-2,4-(1H,3H)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines 12b, 12f, and 12i displayed the most interesting antiproliferative activities against six human cancer cell lines. In the series of quinoline derivatives, 6-phenyl-bis(3-dimethylaminopropyl)aminomethylphenylquinoline 13a proved to be the most active. G-quadruplexes (G4) stacked non-canonical nucleic acid structures found in specific G-rich DNA, or RNA sequences in the human genome are considered as potential targets for the development of anticancer agents. Then, as small aza-organic heterocyclic derivatives are well known to target and stabilize G4 structures, their ability to bind G4 structures have been determined through FRET melting, circular dichroism, and native mass spectrometry assays. Finally, telomerase inhibition ability has been also assessed using the MCF-7 cell line.

2.
Arch Pharm (Weinheim) ; 354(8): e2000450, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33852185

RESUMO

Current multiagent chemotherapy regimens have improved the cure rate in acute leukemia patients, but they are highly toxic and poorly efficient in relapsed patients. To improve the treatment approaches, new specific molecules are needed. The G-quadruplexes (G4s), which are noncanonical nucleic acid structures found in specific guanine-rich DNA or RNA, are involved in many cellular events, including control of gene expression. G4s are considered as targets for the development of anticancer agents. Heterocyclic molecules are well known to target and stabilize G4 structures. Thus, a new series of 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives (1a-i) was designed, synthesized, and evaluated against five human myeloid leukemia cell lines (K562, KU812, MV4-11, HL60, and U937). Their ability to stabilize various oncogene promoter G4 structures (c-MYC, BCL-2, and K-RAS) as well as the telomeric G4 was also determined through the fluorescence resonance energy transfer melting assay and native mass spectrometry. In addition, the more bioactive ligands 1g-i were tested for telomerase activity in HuT78 and MV4-11 protein extracts.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Fenantrolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência , Quadruplex G/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/patologia , Ligantes , Fenantrolinas/síntese química , Fenantrolinas/química , Relação Estrutura-Atividade , Telomerase/metabolismo , Células U937
3.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562106

RESUMO

Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure-activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.


Assuntos
Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Técnicas de Química Sintética , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Quinoxalinas/química , Quinoxalinas/metabolismo
4.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570977

RESUMO

Lysosomes play a key role in regulating cell death in response to cancer therapies, yet little is known on the possible role of lysosomes in the therapeutic efficacy of G-quadruplex DNA ligands (G4L) in cancer cells. Here, we investigate the relationship between the modulation of lysosomal membrane damage and the degree to which cancer cells respond to the cytotoxic effects of G-quadruplex ligands belonging to the triarylpyridine family. Our results reveal that the lead compound of this family, 20A promotes the enlargement of the lysosome compartment as well as the induction of lysosome-relevant mRNAs. Interestingly, the combination of 20A and chloroquine (an inhibitor of lysosomal functions) led to a significant induction of lysosomal membrane permeabilization coupled to massive cell death. Similar effects were observed when chloroquine was added to three new triarylpyridine derivatives. Our findings thus uncover the lysosomal effects of triarylpyridines compounds and delineate a rationale for combining these compounds with chloroquine to increase their anticancer effects.

5.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899980

RESUMO

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenho de Fármacos , Quinolinas/química , Quinolinas/farmacologia , Antiprotozoários/síntese química , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
6.
Expert Opin Drug Saf ; 18(8): 651-677, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31268355

RESUMO

INTRODUCTION: Historically, drug development and marketing failures have been experienced by pharma organizations largely from insufficient human-predictability of biological data. AREAS COVERED: Organs-on-chips (OOCs) are emerging, cutting edge microphysiology systems for in vitro production of microengineered three-dimensional, miniature organotypic constructs obtained by cultivating small amounts of human primary, or induced pluripotent stem, cells in native-like microhabitats. These preparations circumvent experimental limitations inherent to animal assays and two-dimensional monolayers, the mainstay core biological assays of traditional drug research. This report reviews the fundamental tenets, key components (chip plate, biomaterials, cell differentiation approaches, and monitoring sensors) and issues concerning OOC systems (engineered top-down and bottom-up strategies for tissue/organ assembly, public aids to OOC development, regulatory validation, advantages, limitations, prospective and perspective of OOCs, ethics). Examples of OOC platforms (cancer-, lung-, blood-brain barrier-, heart-, intestine-, kidney-, liver-, pharmacokinetics-, placenta and vessel-on-chip) and their importance for drug research and development are presented. EXPERT OPINION: OOC device-generated bioconstructs hold great promise as experimental human tissue and organ platforms for generating human-pertinent knowledge on drug candidates for clinical assessment and reducing reliance on animal models. MPS technologies currently enable ready-to-assemble tissue patches and, hopefully, in coming decades, full-size, patient-personalized organs for regenerative medical interventions.


Assuntos
Desenvolvimento de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Alternativas aos Testes com Animais , Animais , Humanos , Pesquisa Farmacêutica/métodos , Células-Tronco/citologia
7.
Molecules ; 24(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669445

RESUMO

Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Nanoestruturas/química , Peptídeos/química , Aminoácidos/química , Transporte Biológico , Dipeptídeos , Liberação Controlada de Fármacos , Humanos , Terapia de Alvo Molecular , Nanomedicina , Fenilalanina/análogos & derivados , Fenilalanina/química , Multimerização Proteica
8.
Med Chem ; 14(3): 293-303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28745231

RESUMO

BACKGROUND: We prepared a novel series of enantiopure mefloquine analogues with pyrrolo[ 1,2-a]quinoxaline core in order to fight Plasmodium falciparum resistant strain. OBJECTIVES: To observe the influence of pyrrolo[1,2-a]quinoxaline core versus quinoline core on the antimalarial activity. METHOD: Four enantiopure aminoalcoholpyrrolo[1,2-a]quinoxalines 2 were synthetized via Sharpless asymmetric dihydroxylation reaction in eight steps. Their antimalarial activity was evaluated on two Plasmodium falciparum strains 3D7 and W2 with a SYBR Green I fluorescence-based method and their cytotoxicity was measured on four cell lines HepG2, THP-1, CHO and HFF. RESULTS: IC50 values of the four compounds 2 were close to the micromolar against the two P. falciparum strains. They were more active against P. falciparum strain W2 vs. P. falciparum strain 3D7. (R)- enantiomers were always more active than their (S)-counterpart whatever the strain. Selectivity indexes of compounds 2 were lower than 100. CONCLUSION: A novel series of enantiopure aminoalcohols with pyrrolo[1,2-a]quinoxaline core were synthesized in eight steps. They displayed IC50 values close to the micromolar against two P. falciparum strains 3D7 and W2. Although, In this series, 2,8-bistrifluoromethylquinoline was a best core than pyrrolo[1,2-a]quinoxaline for an optimal antimalarial activity, the pyrroloquinoxaline 2b showed an interesting antimalarial activity.


Assuntos
Amino Álcoois/farmacologia , Antimaláricos/farmacologia , Mefloquina/análogos & derivados , Mefloquina/farmacologia , Pirróis/farmacologia , Quinoxalinas/farmacologia , Amino Álcoois/síntese química , Amino Álcoois/química , Amino Álcoois/toxicidade , Animais , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/toxicidade , Células CHO , Linhagem Celular Tumoral , Cloroquina/farmacologia , Cricetulus , Humanos , Mefloquina/química , Mefloquina/toxicidade , Plasmodium falciparum/efeitos dos fármacos , Pirróis/síntese química , Pirróis/química , Pirróis/toxicidade , Quinoxalinas/síntese química , Quinoxalinas/química , Quinoxalinas/toxicidade , Estereoisomerismo
9.
Chem Biol Drug Des ; 91(5): 974-995, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29266861

RESUMO

A series of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives was synthesized, and the compounds were screened in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiparasitic activity with IC50 values in the µm range. The in vitro cytotoxicity of these molecules was assessed by incubation with human HepG2 cells; for some derivatives, cytotoxicity was observed at significantly higher concentrations than antiparasitic activity. The 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline 1h was identified as the most potent antimalarial candidate with ratios of cytotoxic-to-antiparasitic activities of 107 and 39 against a chloroquine-sensitive and a chloroquine-resistant strain of P. falciparum, respectively. As the telomeres of the parasite P. falciparum are the likely target of this compound, we investigated stabilization of the Plasmodium telomeric G-quadruplexes by our phenanthroline derivatives through a FRET melting assay. The ligands 1f and 1m were noticed to be more specific for FPf8T with higher stabilization for FPf8T than for the human F21T sequence.


Assuntos
Antiprotozoários/síntese química , Desenho de Fármacos , Fenantrolinas/química , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quadruplex G , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Ligantes , Fenantrolinas/metabolismo , Fenantrolinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura de Transição , Trypanosoma brucei brucei/efeitos dos fármacos
10.
ChemMedChem ; 12(12): 940-953, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28218826

RESUMO

Acute leukemia is a hematological malignancy with high incidence and recurrence rates and is characterized by an accumulation of blasts in bone marrow due to proliferation of immature lymphoid or myeloid cells associated with a blockade of differentiation. The heterogeneity of leukemia led us to look for new specific molecules for leukemia subtypes or for therapy-resistant cases. Among heterocyclic derivatives that attracted attention due to their wide range of biological activities, we focused our interest on the pyrrolo[1,2-a]quinoxaline heterocyclic framework that has been previously identified as an interesting scaffold for antiproliferative activities against various human cancer cell lines. In this work, new ethyl 4-[4-(4-substituted piperidin-1-yl)]benzylpyrrolo[1,2-a]quinoxalinecarboxylate derivatives (1 a-o) were designed, synthesized, and evaluated against five different leukemia cell lines, including Jurkat and U266 (lymphoid cell lines) and K562, U937, and HL60 (myeloid cell lines), as well as on normal human peripheral blood mononuclear cells (PBMCs). This new pyrrolo[1,2-a]quinoxaline series showed interesting cytotoxic potential against all tested leukemia cell lines. In particular, pyrroloquinoxalines 1 a and 1 m,n seem to be interesting due to their high activity against leukemia and their low activity against normal hematopoietic cells, leading to a high index of selectivity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Leucemia/tratamento farmacológico , Leucemia/patologia , Quinoxalinas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
J Enzyme Inhib Med Chem ; 32(1): 547-563, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28114821

RESUMO

Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the µM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure-activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Propilaminas/farmacologia , Quinoxalinas/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Propilaminas/síntese química , Propilaminas/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
12.
ChemMedChem ; 12(2): 146-160, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27917615

RESUMO

Genomic sequences able to form guanine quadruplexes (G4) are found in oncogene promoters, in telomeres, and in 5'- and 3'-untranslated regions as well as introns of messenger RNAs. These regions are potential targets for drugs designed to treat cancer. Herein, we present the design and syntheses of ten new phenanthroline derivatives and characterization of their interactions with G4-forming oligonucleotides. We evaluated ligand-induced stabilization and specificity and selectivity of ligands for various G4 conformations using FRET-melting experiments. We investigated the interaction of compound 1 a (2,9-bis{4-[(3-dimethylaminopropyl)aminomethyl]phenyl}-1,10-phenanthroline), which combined the greatest stabilizing effect and specificity for G4, with human telomeric sequences using FRET, circular dichroism, and ESI-MS. In addition, we showed that compound 1 a interferes with the G4 helicase activity of Saccharomyces cerevisiae Pif1. Interestingly, compound 1 a was significantly more cytotoxic toward two human leukemic cell lines than to normal human blood mononuclear cells. These novel phenanthroline derivatives will be a starting point for further development and optimization of potent G4 ligands that have potential as anticancer agents.


Assuntos
Desenho de Fármacos , Quadruplex G , Fenantrolinas/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Células HL-60 , Humanos , Células K562 , Ligantes , Fenantrolinas/síntese química , Fenantrolinas/toxicidade , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade
13.
Molecules ; 23(1)2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301210

RESUMO

G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 µM concentration for the most potent ligand 1c. The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quadruplex G , Piridinas/síntese química , Piridinas/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Células HL-60 , Humanos , Células K562 , Ligantes , Ligação Proteica , Relação Estrutura-Atividade , Telomerase/antagonistas & inibidores
14.
Eur J Med Chem ; 113: 214-27, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-26945110

RESUMO

Leukemia is the most common blood cancer, and its development starts at diverse points, leading to distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-resistant cases. Among heterocyclic compounds that attracted a lot of attention because of its wide spread biological activities, the pyrrolo[1,2-a]quinoxaline heterocyclic framework has been identified as interesting scaffolds for antiproliferative activity against various human cancer cell lines. In the present study, novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives 1a-l have been designed and synthesized. Their cytotoxicities were evaluated against five different leukemia cell lines, including Jurkat and U266 (lymphoid cell lines), and K562, U937, HL60 (myeloid cell lines), as well as normal human peripheral blood mononuclear cells (PBMNCs). Then, apoptosis study was performed with the more interesting compounds. The new pyrrolo[1,2-a]quinoxaline series showed promising cytotoxic potential against all leukemia cell lines tested, and some compounds showed better results than the reference compound A6730. Some compounds, such as 1a, 1e, 1g and 1h are promising because of their high activity against leukemia and their low activity against normal hematopoietic cells. Structure-activity relationships of these new synthetic compounds 1a-l are here also discussed.


Assuntos
Antineoplásicos/farmacologia , Ácidos Carboxílicos/farmacologia , Quinoxalinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Carboxílicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Biopolymers ; 106(3): 368-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832831

RESUMO

The design and synthesis of novel peptides that inhibit angiogenesis is an important area for anti-angiogenic drug development. Cyclic and small peptides present several advantages for therapeutic application, including stability, solubility, increased bio-availability and lack of immune response in the host cell. We describe here the synthesis and biological evaluations of a new cyclic peptide analog of CBO-P11: cyclo(RIKPHE), designated herein as CBO-P23M, a hexamer peptide encompassing residues 82 to 86 of VEGF which are involved in the interaction with VEGF receptor-2. CBO-P23M was prepared using in solution cyclization, therefore reducing the peptide cyclodimerization occurred during solid-phase cyclization. The cyclic dimer of CBO-P23M, which was obtained as the main side product during synthesis of the corresponding monomer, was also isolated and investigated. Both peptides markedly reduce VEGF-A-induced phosphorylation of VEGFR-2 and Erk1/2. Moreover, they exhibit anti-angiogenic activity in an in vitro morphogenesis study. Therefore CBO-P23M and CBO-P23M dimer appear as attractive candidates for the development of novel angiogenesis inhibitors for the treatment of cancer and other angiogenesis-related diseases. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 368-375, 2016.


Assuntos
Inibidores da Angiogênese/síntese química , Peptídeos Cíclicos/síntese química , Soluções/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Ciclização , Dimerização , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Mol Biosyst ; 11(11): 2925-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26263446

RESUMO

Intrinsically disordered proteins/peptides play a crucial role in many physiological and pathological events and may assume a precise conformation upon binding to a specific target. Recently, we have described the conformational and functional properties of two linear ester peptides provided with the following sequences: Y-G-E-C-P-C-K-OAllyl (PepK) and Y-G-E-C-P-C-E-OAllyl (PepE). Both peptides are characterized by the presence of the "CPC" motif together with a few amino acids able to promote disorder. The CPC sequence is a binding motif for the CXCR4 receptor that represents a well-known target for cancer therapies. In this paper, we report on synthetic amphiphilic peptides that consist of lipophilic derivatives of PepE and PepK bearing two stearic alkyl chains and/or an ethoxylic spacer. These peptide amphiphiles form stable supramolecular aggregates; they present conformational features that are typical of intrinsically disordered molecules as shown by CD spectroscopy. Solution fluorescence and DLS studies have been performed to evaluate Critical Micellar Concentrations and the dimension of supramolecular aggregates. Moreover, preliminary in vitro cell-based assays have been conducted to investigate the molecular recognition processes involving the CXCR4 receptor. In the end, the results obtained have been compared with the previous data generated by the corresponding non-amphiphilic peptides (PepE and PepK).


Assuntos
Sistemas de Liberação de Medicamentos , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Tensoativos/química , Animais , Dicroísmo Circular , AMP Cíclico/metabolismo , Difusão Dinâmica da Luz , Corantes Fluorescentes/química , Peptídeos/síntese química , Agregados Proteicos , Receptores CXCR4 , Espectrometria de Fluorescência
17.
Drug Des Devel Ther ; 9: 3481-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170632

RESUMO

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Indenos/farmacologia , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Fenóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indenos/síntese química , Indenos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Camundongos , Mitoxantrona/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células NIH 3T3 , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Transfecção
18.
Int J Mol Sci ; 16(6): 12159-73, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26030674

RESUMO

This work reports on the design and the synthesis of two short linear peptides both containing a few amino acids with disorder propensity and an allylic ester group at the C-terminal end. Their structural properties were firstly analyzed by means of experimental techniques in solution such as CD and NMR methods that highlighted peptide flexibility. These results were further confirmed by MD simulations that demonstrated the ability of the peptides to assume conformational ensembles. They revealed a network of transient and dynamic H-bonds and interactions with water molecules. Binding assays with a well-known drug-target, i.e., the CXCR4 receptor, were also carried out in an attempt to verify their biological function and the possibility to use the assays to develop new specific targets for CXCR4. Moreover, our data indicate that these peptides represent useful tools for molecular recognition processes in which a flexible conformation is required in order to obtain an interaction with a specific target.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Peptídeos/síntese química , Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Dicroísmo Circular , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Espectroscopia de Prótons por Ressonância Magnética
19.
J Med Chem ; 58(1): 265-77, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25272055

RESUMO

A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Caseína Quinase II/antagonistas & inibidores , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Células MCF-7 , Mitoxantrona/metabolismo , Modelos Químicos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
20.
Eur J Med Chem ; 81: 378-93, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24858543

RESUMO

A series of new 4-alkapolyenylpyrrolo[1,2-a]quinoxaline derivatives, original and structural analogues of alkaloid chimanine B and of previously described 4-alkenylpyrrolo[1,2-a]quinoxalines, was synthesized in good yields using efficient palladium-catalyzed Suzuki-Miyaura cross-coupling reactions. These new compounds were tested for in vitro antiparasitic activity upon three Leishmania spp. strains. Biological results showed activity against the promastigote forms of L. major, L. mexicana and L. donovani with IC50 ranging from 1.2 to 14.7 µM. In attempting to investigate if our pyrrolo[1,2-a]quinoxaline derivatives are broad-spectrum antiprotozoal compounds activities toward one Trypanosoma brucei brucei strain and the W2 and 3D7 Plasmodium falciparum strains were also investigated. In parallel, the in vitro cytotoxicity of these molecules was assessed on the murine J774 and human HepG2 cell lines. Structure-activity relationships of these new synthetic compounds are here discussed.


Assuntos
Desenho de Fármacos , Leishmania/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinoxalinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Tripanossomicidas/administração & dosagem , Tripanossomicidas/síntese química , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA