Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517886

RESUMO

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Assuntos
Neoplasias da Mama , Redes Reguladoras de Genes , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Animais , Camundongos , Cromossomos Humanos Par 4/genética , Proliferação de Células/genética , Aberrações Cromossômicas , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
2.
Neuro Oncol ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271182

RESUMO

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.

3.
Mol Biol Cell ; 35(2): br5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991903

RESUMO

Loss of cell polarity and disruption of tissue organization are key features of tumorigenesis that are intrinsically linked to spindle orientation. Epithelial tumors are often characterized by spindle orientation defects, but how these defects impact tumor formation driven by common oncogenic mutations is not fully understood. Here, we examine the role of spindle orientation in adult epidermis by deleting a key spindle regulator, LGN, in normal tissue and in a PTEN-deficient mouse model. We report that LGN deficiency in PTEN mutant epidermis leads to a threefold increase in the likelihood of developing tumors on the snout, and an over 10-fold increase in tumor burden. In this tissue, loss of LGN alone increases perpendicular and oblique divisions of epidermal basal cells, at the expense of a planar orientation of division. PTEN loss alone does not significantly affect spindle orientation in these cells, but the combined loss of PTEN and LGN fully randomizes basal spindle orientation. A subset of LGN- and PTEN-deficient animals have increased amounts of proliferative spinous cells, which may be associated with tumorigenesis. These results indicate that loss of LGN impacts spindle orientation and accelerates epidermal tumorigenesis in a PTEN-deficient mouse model.


Assuntos
Epiderme , Fuso Acromático , Animais , Camundongos , Fuso Acromático/genética , Células Epidérmicas , Carcinogênese , Polaridade Celular/genética
4.
ACS Nano ; 17(13): 12052-12071, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366177

RESUMO

Extracellular vesicles (EVs) are continually released from cancer cells into biofluids, carrying actionable molecular fingerprints of the underlying disease with considerable diagnostic and therapeutic potential. The scarcity, heterogeneity and intrinsic complexity of tumor EVs present a major technological challenge in real-time monitoring of complex cancers such as glioblastoma (GBM). Surface-enhanced Raman spectroscopy (SERS) outputs a label-free spectroscopic fingerprint for EV molecular profiling. However, it has not been exploited to detect known biomarkers at the single EV level. We developed a multiplex fluidic device with embedded arrayed nanocavity microchips (MoSERS microchip) that achieves 97% confinement of single EVs in a minute amount of fluid (<10 µL) and enables molecular profiling of single EVs with SERS. The nanocavity arrays combine two featuring characteristics: (1) An embedded MoS2 monolayer that enables label-free isolation and nanoconfinement of single EVs due to physical interaction (Coulomb and van der Waals) between the MoS2 edge sites and the lipid bilayer; and (2) A layered plasmonic cavity that enables sufficient electromagnetic field enhancement inside the cavities to obtain a single EV level signal resolution for stratifying the molecular alterations. We used the GBM paradigm to demonstrate the diagnostic potential of the SERS single EV molecular profiling approach. The MoSERS multiplexing fluidic achieves parallel signal acquisition of glioma molecular variants (EGFRvIII oncogenic mutation and MGMT expression) in GBM cells. The detection limit of 1.23% was found for stratifying these key molecular variants in the wild-type population. When interfaced with a convolutional neural network (CNN), MoSERS improved diagnostic accuracy (87%) with which GBM mutations were detected in 12 patient blood samples, on par with clinical pathology tests. Thus, MoSERS demonstrates the potential for molecular stratification of cancer patients using circulating EVs.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Molibdênio/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/patologia , Vesículas Extracelulares/química , Análise Espectral Raman
5.
Can J Surg ; 66(1): E79-E87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792128

RESUMO

BACKGROUND: It has recently been reported that mismatch repair (MMR) status and microsatellite instability (MSI) status in gastroesophageal carcinomas predict surgical, chemotherapeutic and immunotherapeutic outcomes; however, there is extensive variability in the reported incidence and clinical implications of MMR/MSI status in gastroesophaegal adenocarcinomas. We characterized a Canadian surgical patient cohort with respect to MMR status, clinicopathologic correlates and anatomic tumour location. METHODS: We investigated MMR and BRAF V600E status of gastroesophaegal adenocarcinomas in patients who underwent gastrectomy or esophagectomy with extended (D2) lymphadenectomy at a single centre between 2011 and 2019. We correlated patterns of MMR expression in the overall cohort and in anatomic location-defined subgroups with treatment response and overall survival using multivariate analysis. RESULTS: In all, 226 cases of gastroesophaegal adenocarcinoma (63 esophageal, 98 gastroesophageal junctional and 65 gastric) were included. The MMR-deficient (dMMR) immunophenotype was found in 28 tumours (12.3%) (15 junctional [15.3%], 13 gastric [20.0%] and none of the esophageal). The majority (25 [89%]) of dMMR cases showed MLH1/PMS2 loss without concurrent BRAF V600E mutation. Two MSH2/ MSH6-deficient gastric tumours and 1 MSH6-deficient junctional tumour were detected. The pathologic response to preoperative chemotherapy was comparable in the dMMR and MMR-proficient (pMMR) cohorts. However, dMMR status was associated with significantly longer median overall survival than pMMR status (5.8 yr v. 2.4 yr, hazard ratio [HR] 1.91, 95% confidence interval [CI] 1.06-3.46), particularly in junctional tumours (4.6 yr v. 1.9 yr, HR 2.97, 95% CI 1.27-6.94). CONCLUSION: Our study shows that MMR status has at least prognostic value, which supports the need for biomarker testing in gastroesophageal adenocarcinomas, including junctional adenocarcinomas. This highlights the clinical significance of determining the MMR status in all adenocarcinomas of the upper gastrointestinal tract. Response to induction chemotherapy, however, was not influenced by MMR status.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Reparo de Erro de Pareamento de DNA/genética , Canadá , Adenocarcinoma/genética , Adenocarcinoma/terapia , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/genética
6.
Nature ; 614(7948): 555-563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725935

RESUMO

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Assuntos
Neoplasias Encefálicas , Glioma , Análise de Célula Única , Microambiente Tumoral , Humanos , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Glioblastoma/imunologia , Glioblastoma/patologia , Glioma/imunologia , Glioma/patologia , Macrófagos/enzimologia , Microambiente Tumoral/imunologia , Metástase Neoplásica , Conjuntos de Dados como Assunto
7.
Can J Neurol Sci ; 50(3): 428-434, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581927

RESUMO

BACKGROUND: The optimal treatment of adult craniopharyngioma (CP) remains controversial. Although benign, these tumors tend to recur locally. The choice between gross total resection (GTR) versus subtotal resection (STR) with adjuvant or delayed radiotherapy (RT) is debated. The objective of this study is to review our experience with adult CPs over a 20-year period and identify an optimal management strategy. METHODS: From 1999 to 2020, we reviewed all patients diagnosed with CP at our institution. We collected data regarding tumor characteristics, treatments, and toxicity. Disease progression was defined as growth on imaging. Descriptive statistics were used to assess patient characteristics. The Kaplan Meier method was used to assess progression-free survival (PFS) and corresponding 95% confidence intervals (CI) from the time since treatment initiation. RESULTS: Twenty-four patients with a median age of 50 were included in this study. The median follow-up was 85 months. Seven patients had initial GTR, 10 STR, and 7 STR + RT. The overall 5-year PFS was 56% (95% CI: 38-83%): 100% in the STR + RT group, 69% in the GTR group, and 18% in the STR group (p = 0.01). Of the 17 patients initially treated with surgery alone, 3 with GTR and 6 with STR required salvage RT at a median of 46 months, with no further progression after salvage RT. CONCLUSIONS: Our study underscores the importance of RT for local control and suggests that STR + RT should be considered a viable option in the management of these tumors as it may be associated with improved PFS compared to surgery alone.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Adulto , Humanos , Radioterapia Adjuvante/métodos , Craniofaringioma/diagnóstico por imagem , Craniofaringioma/radioterapia , Craniofaringioma/cirurgia , Recidiva Local de Neoplasia , Resultado do Tratamento , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/radioterapia , Neoplasias Hipofisárias/cirurgia , Estudos Retrospectivos
9.
BMJ Case Rep ; 15(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36410786

RESUMO

Plurihormonal pituitary adenomas are rare forms of pituitary adenomas that express more than one hormone. The most common association is with growth hormone (GH) and prolactin. Cosecretion of GH and adrenocorticotrophic hormone (ACTH) is rare with only 25 reported cases in literature. Most presented with features of GH excess, and only four presented with Cushing's disease. We report a case of a woman in her 30s with recurrent plurihormonal pituitary macroadenoma cosecreting GH and ACTH, diagnosed during workup for polycystic ovarian syndrome, and both times presenting uniquely with Cushing's disease. Biochemical testing showed GH excess and hypercortisolism. She underwent transsphenoidal surgery twice and immunohistochemistry showed positive staining for GH and ACTH on both occasions. We aim to raise more awareness of this rare type of pituitary adenoma, shed light on the importance of recognising rare presentations and highlight the necessity of rigorous follow-up given morbidity and potentially higher mortality risk.


Assuntos
Adenoma , Hormônio do Crescimento Humano , Hipersecreção Hipofisária de ACTH , Neoplasias Hipofisárias , Feminino , Humanos , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/cirurgia , Hipersecreção Hipofisária de ACTH/etiologia , Hipersecreção Hipofisária de ACTH/complicações , Hormônio Adrenocorticotrópico , Hormônio do Crescimento , Adenoma/complicações , Adenoma/cirurgia , Adenoma/diagnóstico
10.
Front Oncol ; 12: 860767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547873

RESUMO

The immune contexture of pancreatic ductal adenocarcinoma (PDAC) is generally immunosuppressive. A role for immune checkpoint inhibitors (ICIs) in PDAC has only been demonstrated for the rare and hypermutated mismatch repair (MMR) deficient (MMR-d) subtype. Homologous recombination repair (HR) deficient (HR-d) PDAC is more prevalent and may encompass up to 20% of PDAC. Its genomic instability may promote a T-cell mediated anti-tumor response with therapeutic sensitivity to ICIs. To investigate the immunogenicity of HR-d PDAC, we used multiplex immunohistochemistry (IHC) to compare the density and spatial distribution of CD8+ cytotoxic T-cells, FOXP3+ regulatory T-cells (Tregs), and CD68+ tumor-associated macrophages (TAMs) in HR-d versus HR/MMR-intact PDAC. We also evaluated the IHC positivity of programmed death-ligand 1 (PD-L1) across the subgroups. 192 tumors were evaluated and classified as HR/MMR-intact (n=166), HR-d (n=25) or MMR-d (n=1) based on germline testing and tumor molecular hallmarks. Intra-tumoral CD8+ T-cell infiltration was higher in HR-d versus HR/MMR-intact PDAC (p<0.0001), while CD8+ T-cell densities in the peri-tumoral and stromal regions were similar in both groups. HR-d PDAC also displayed increased intra-tumoral FOXP3+ Tregs (p=0.049) and had a higher CD8+:FOXP3+ ratio (p=0.023). CD68+ TAM expression was similar in HR-d and HR/MMR-intact PDAC. Finally, 6 of the 25 HR-d cases showed a PD-L1 Combined Positive Score of >=1, whereas none of the HR/MMR-intact cases met this threshold (p<0.00001). These results provide immunohistochemical evidence for intra-tumoral CD8+ T-cell enrichment and PD-L1 positivity in HR-d PDAC, suggesting that HR-d PDAC may be amenable to ICI treatment strategies.

11.
Sci Immunol ; 7(70): eabi5072, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363543

RESUMO

Melanoma is an immunogenic cancer with a high response rate to immune checkpoint inhibitors (ICIs). It harbors a high mutation burden compared with other cancers and, as a result, has abundant tumor-infiltrating lymphocytes (TILs) within its microenvironment. However, understanding the complex interplay between the stroma, tumor cells, and distinct TIL subsets remains a substantial challenge in immune oncology. To properly study this interplay, quantifying spatial relationships of multiple cell types within the tumor microenvironment is crucial. To address this, we used cytometry time-of-flight (CyTOF) imaging mass cytometry (IMC) to simultaneously quantify the expression of 35 protein markers, characterizing the microenvironment of 5 benign nevi and 67 melanomas. We profiled more than 220,000 individual cells to identify melanoma, lymphocyte subsets, macrophage/monocyte, and stromal cell populations, allowing for in-depth spatial quantification of the melanoma microenvironment. We found that within pretreatment melanomas, the abundance of proliferating antigen-experienced cytotoxic T cells (CD8+CD45RO+Ki67+) and the proximity of antigen-experienced cytotoxic T cells to melanoma cells were associated with positive response to ICIs. Our study highlights the potential of multiplexed single-cell technology to quantify spatial cell-cell interactions within the tumor microenvironment to understand immune therapy responses.


Assuntos
Melanoma , Humanos , Citometria por Imagem , Linfócitos do Interstício Tumoral , Linfócitos T Citotóxicos , Microambiente Tumoral
12.
Onco Targets Ther ; 15: 367-380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422631

RESUMO

Glioblastoma is an aggressive form of central nervous system tumor. Recurrence rates following primary therapy are high, and few second-line treatment options provide durable clinical benefit. Aberrations of the epidermal growth factor receptor (EGFR) gene are observed in up to 57% of glioblastoma cases and EGFR overexpression has been identified in approximately 60% of primary glioblastomas. In preclinical studies, afatinib, a second-generation ErbB blocker, inhibited cell proliferation in cells harboring mutations commonly found in glioblastoma. In two previous Phase I/II studies of afatinib plus temozolomide in patients with glioblastoma, limited efficacy was observed; however, there was notable benefit in patients with the EGFR variant III (EGFRvIII) mutation, EGFR amplification, and those with loss of phosphatase and tensin homolog (PTEN). This case series report details treatment histories of three long-term responders from these trials. Next-generation sequencing of tumor samples identified alterations in a number of cancer-related genes, including mutations in, and amplification of, EGFR. Tumor samples from all three patients shared favorable prognostic factors, eg O6-methylguanine-DNA methyl-transferase (MGMT) gene promoter methylation; however, negative prognostic factors were also observed, suggesting that these shared genetic features did not completely account for the favorable responses. The genetic profile of the tumor from Patient 1 showed clear differences from the other two tumors: lack of involvement of EGFR aberrations but with a mutation occurring in PTPN11. Preclinical studies showed that single-agent afatinib and temozolomide both separately inhibit the growth of tumors with a C-terminal EGFR truncation, thus providing further rationale for combining these two agents in the treatment of glioblastomas harboring EGFR aberrations. These findings suggest that afatinib may provide treatment benefit in patients with glioblastomas that harbor ErbB family aberrations and, potentially, other genetic aberrations. Further studies are needed to establish which patients with newly diagnosed/recurrent glioblastomas may potentially benefit from treatment with afatinib.

13.
Neuro Oncol ; 24(9): 1494-1508, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35416251

RESUMO

BACKGROUND: Glioblastoma is a treatment-resistant brain cancer. Its hierarchical cellular nature and its tumor microenvironment (TME) before, during, and after treatments remain unresolved. METHODS: Here, we used single-cell RNA sequencing to analyze new and recurrent glioblastoma and the nearby subventricular zone (SVZ). RESULTS: We found 4 glioblastoma neural lineages are present in new and recurrent glioblastoma with an enrichment of the cancer mesenchymal lineage, immune cells, and reactive astrocytes in early recurrences. Cancer lineages were hierarchically organized around cycling oligodendrocytic and astrocytic progenitors that are transcriptomically similar but distinct to SVZ neural stem cells (NSCs). Furthermore, NSCs from the SVZ of patients with glioblastoma harbored glioblastoma chromosomal anomalies. Lastly, mesenchymal cancer cells and TME reactive astrocytes shared similar gene signatures which were induced by radiotherapy in a myeloid-dependent fashion in vivo. CONCLUSION: These data reveal the dynamic, immune-dependent nature of glioblastoma's response to treatments and identify distant NSCs as likely cells of origin.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Ventrículos Laterais/patologia , Células-Tronco Neurais/patologia , Análise de Célula Única , Microambiente Tumoral
14.
J Neurosurg ; : 1-7, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972090

RESUMO

OBJECTIVE: The authors' objective was to report postsurgical seizure outcome of temporal lobe epilepsy (TLE) patients with normal or subtle, nonspecific MRI findings and to identify prognostic factors related to seizure control after surgery. METHODS: This was a retrospective study of patients who underwent surgery from 1999 to 2014 at two comprehensive epilepsy centers. Patients with a clear MRI lesion according to team discussion and consensus were excluded. Presurgical information, surgery details, pathological data, and postsurgical outcomes were retrospectively collected from medical charts. Multiple logistic regression analysis was used to assess the effect of clinical, surgical, and neuroimaging factors on the probability of Engel class I (favorable) versus class II-IV (unfavorable) outcome at last follow-up. RESULTS: The authors included 73 patients (59% were female; median age at surgery 35.9 years) who underwent operations after a median duration of epilepsy of 13 years. The median follow-up after surgery was 30.6 months. At latest follow-up, 44% of patients had Engel class I outcome. Favorable prognostic factors were focal nonmotor aware seizures and unilateral or no spikes on interictal scalp EEG. CONCLUSIONS: Favorable outcome can be achieved in a good proportion of TLE patients with normal or subtle, nonspecific MRI findings, particularly when presurgical investigation suggests a rather circumscribed generator. Presurgical factors such as the presence of focal nonmotor aware seizures and unilateral or no spikes on interictal EEG may indicate a higher probability of seizure freedom.

15.
Nat Commun ; 12(1): 5404, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518526

RESUMO

Inactivating mutations in SMARCA4 and concurrent epigenetic silencing of SMARCA2 characterize subsets of ovarian and lung cancers. Concomitant loss of these key subunits of SWI/SNF chromatin remodeling complexes in both cancers is associated with chemotherapy resistance and poor prognosis. Here, we discover that SMARCA4/2 loss inhibits chemotherapy-induced apoptosis through disrupting intracellular organelle calcium ion (Ca2+) release in these cancers. By restricting chromatin accessibility to ITPR3, encoding Ca2+ channel IP3R3, SMARCA4/2 deficiency causes reduced IP3R3 expression leading to impaired Ca2+ transfer from the endoplasmic reticulum to mitochondria required for apoptosis induction. Reactivation of SMARCA2 by a histone deacetylase inhibitor rescues IP3R3 expression and enhances cisplatin response in SMARCA4/2-deficient cancer cells both in vitro and in vivo. Our findings elucidate the contribution of SMARCA4/2 to Ca2+-dependent apoptosis induction, which may be exploited to enhance chemotherapy response in SMARCA4/2-deficient cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , DNA Helicases/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Transporte de Íons/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Epilepsia ; 62(7): 1559-1568, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34060082

RESUMO

OBJECTIVE: Previous positron emission tomography (PET) studies using [11 C]ABP688 show reduced metabotropic glutamate receptor type 5 (mGluR5) allosteric binding site availability in the epileptogenic hippocampus of mesial temporal lobe epilepsy (MTLE) patients. However, the link between mGluR5 abnormalities and postsurgical outcomes remains unclear. Here, we test whether reduced PET [11 C]ABP688 binding in cornu ammonis (CA) sectors more vulnerable to glutamatergic excitotoxicity relates to surgical outcomes. METHODS: We obtained magnetic resonance imaging (MRI) and [11 C]ABP688-PET from 31 unilateral MTLE patients and 30 healthy controls. MRI hippocampal subfields were segmented using FreeSurfer. To respect the lower PET special resolution, MRI-derived anatomical subfields were combined into CA1-3, CA4/dentate gyrus, and Subiculum. Partial volume corrected [11 C]ABP688 nondisplaceable binding potential (BPND ) values were averaged across each subfield, and Z-scores were calculated. Subfield [11 C]ABP688-BPND was compared between seizure-free and non-seizure-free patients. In addition, we also assessed subfield volumes and [18 F]fluorodeoxyglucose (FDG) uptake in each clinical group. RESULTS: MTLE [11 C]ABP688-BPND was reduced in ipsilateral (epileptogenic) CA1-3 and CA4/dentate-gyrus (p < .001, 95% confidence interval [CI] = .29-.51) compared to controls, with no difference in Subiculum. [11 C]ABP688-BPND and subfield volumes were compared between seizure-free (Engel IA, n = 13) and non-seizure-free patients (Engel IC-III, n = 10). In ipsilateral CA1-3 only, [11 C]ABP688-BPND was lower in seizure-free patients than in non-seizure-free patients (p = .012, 95% CI = 1.46-11.0) independently of volume. A subset analysis of 12 patients with [11 C]ABP688-PET+[18 F]FDG-PET showed no between-group significant difference in [18 F]FDG uptake, whereas CA1-3 [11 C]ABP688-BPND remained significantly lower in the seven of 12 seizure-free patients (p = .03, 95% CI = -3.13 to -.21). SIGNIFICANCE: Reduced mGluR5 allosteric site availability in hippocampal CA1-3, measured in vivo by [11 C]ABP688-PET, is associated with postsurgery seizure freedom independent of atrophy or hypometabolism. Information derived from hippocampal CA1-3 [11 C]ABP688-PET is a promising imaging biomarker potentially impactful in surgical decisions for MRI-negative/PET-negative MTLE patients.


Assuntos
Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/cirurgia , Ácido Glutâmico/genética , Hipocampo/metabolismo , Procedimentos Neurocirúrgicos , Receptores de Ácido Caínico/genética , Adolescente , Adulto , Idoso , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oximas , Tomografia por Emissão de Pósitrons , Piridinas , Compostos Radiofarmacêuticos , Receptores de Ácido Caínico/metabolismo , Resultado do Tratamento , Adulto Jovem
17.
Cancers (Basel) ; 13(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578853

RESUMO

Metastasis to the central nervous system occurs in approximately 20% of patients with advanced solid cancers such as lung cancer, breast cancer, and melanoma. While central nervous system metastases most commonly form in the brain parenchyma, metastatic cancer cells may also reside in the subarachnoid space surrounding the brain and spinal cord to form tumors called leptomeningeal metastases. Leptomeningeal metastasis involves cancer cells that reach the subarachnoid space and proliferate in the cerebrospinal fluid compartment within the leptomeninges, a sequela associated with a myriad of symptoms and poor prognosis. Cancer cells exposed to cerebrospinal fluid in the leptomeninges must contend with a unique microenvironment from those that establish within the brain or other organs. Leptomeningeal lesions provide a formidable clinical challenge due to their often-diffuse infiltration within the subarachnoid space. The molecular mechanisms that promote the establishment of leptomeningeal metastases have begun to be elucidated, demonstrating that it is a biological entity distinct from parenchymal brain metastases and is associated with specific molecular drivers. In this review, we outline the current state of knowledge pertaining to the diagnosis, treatment, and molecular underpinnings of leptomeningeal metastasis.

18.
Neuro Oncol ; 23(9): 1470-1480, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433612

RESUMO

BACKGROUND: Sixty percent of surgically resected brain metastases (BrM) recur within 1 year. These recurrences have long been thought to result from the dispersion of cancer cells during surgery. We tested the alternative hypothesis that invasion of cancer cells into the adjacent brain plays a significant role in local recurrence and shortened overall survival. METHODS: We determined the invasion pattern of 164 surgically resected BrM and correlated with local recurrence and overall survival. We performed single-cell RNA sequencing (scRNAseq) of >15,000 cells from BrM and adjacent brain tissue. Validation of targets was performed with a novel cohort of BrM patient-derived xenografts (PDX) and patient tissues. RESULTS: We demonstrate that invasion of metastatic cancer cells into the adjacent brain is associated with local recurrence and shortened overall survival. scRNAseq of paired tumor and adjacent brain samples confirmed the existence of invasive cancer cells in the tumor-adjacent brain. Analysis of these cells identified cold-inducible RNA-binding protein (CIRBP) overexpression in invasive cancer cells compared to cancer cells located within the metastases. Applying PDX models that recapitulate the invasion pattern observed in patients, we show that CIRBP is overexpressed in highly invasive BrM and is required for efficient invasive growth in the brain. CONCLUSIONS: These data demonstrate peritumoral invasion as a driver of treatment failure in BrM that is functionally mediated by CIRBP. These findings improve our understanding of the biology underlying postoperative treatment failure and lay the groundwork for rational clinical trial development based upon invasion pattern in surgically resected BrM.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Humanos , Recidiva Local de Neoplasia/genética , Proteínas de Ligação a RNA/genética
19.
Neuroimage Clin ; 29: 102552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33401137

RESUMO

To determine the extent of metabotropic glutamate receptor type 5 (mGluR5) network abnormalities associated with focal cortical dysplasia (FCD), we performed graph theoretical analysis of [11C]ABP688 PET binding potentials (BPND), which allows for quantification of mGluR5 availability. Undirected graphs were constructed for the entire cortex in 17 FCD patients and 33 healthy controls using inter-regional similarity of [11C]ABP688 BPND. We assessed group differences in network integration between healthy controls and the ipsilateral and contralateral hemispheres of FCD patients. Compared to healthy controls, FCD patients showed reduced network efficiency and reduced small-world connectivity. The mGluR5 network of FCD patients was also less resilient to targeted removal of high centrality nodes, suggesting a less integrated network organization. In highly efficient hub nodes of FCD patients, we observed a significant negative correlation between local efficiency and duration of epilepsy only in the contralateral hemisphere, suggesting that some nodes may be more vulnerable to persistent epileptic activity. Our study provides the first in vivo evidence for a widespread reduction in cortical mGluR5 network integration in FCD patients. In addition, we find that ongoing epileptic activity may alter chemoarchitectural brain organization resulting in reduced efficiency in distant regions that are essential for network integration.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Epilepsia/diagnóstico por imagem , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
20.
Nat Cancer ; 2(5): 545-562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122017

RESUMO

Metastasis is the leading cause of cancer-related deaths, and obesity is associated with increased breast cancer (BC) metastasis. Preclinical studies have shown that obese adipose tissue induces lung neutrophilia associated with enhanced BC metastasis to this site. Here we show that obesity leads to neutrophil-dependent impairment of vascular integrity through loss of endothelial adhesions, enabling cancer cell extravasation into the lung. Mechanistically, neutrophil-produced reactive oxygen species in obese mice increase neutrophil extracellular DNA traps (NETs) and weaken endothelial junctions, facilitating the influx of tumor cells from the peripheral circulation. In vivo treatment with catalase, NET inhibitors or genetic deletion of Nos2 reversed this effect in preclinical models of obesity. Imaging mass cytometry of lung metastasis samples from patients with cancer revealed an enrichment in neutrophils with low catalase levels correlating with elevated body mass index. Our data provide insights into potentially targetable mechanisms that underlie the progression of BC in the obese population.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Neoplasias da Mama/metabolismo , Catalase/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Neutrófilos/metabolismo , Obesidade/complicações , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA