Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347645

RESUMO

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Assuntos
Doença de Lafora , MicroRNAs , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso , Doenças Neuroinflamatórias
2.
J Biol Chem ; 296: 100150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277363

RESUMO

Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin-deficient murine LD.


Assuntos
Gliose/prevenção & controle , Glicogênio Sintase/fisiologia , Inflamação/prevenção & controle , Doença de Lafora/patologia , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Animais , Feminino , Gliose/metabolismo , Gliose/patologia , Inflamação/metabolismo , Inflamação/patologia , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Doença de Lafora/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA