Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Clin Pharmacokinet ; 63(7): 1025-1036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963459

RESUMO

BACKGROUND AND OBJECTIVE: Trough abiraterone concentration (ABI Cmin) of 8.4 ng/mL has been identified as an appropriate efficacy threshold in patients treated for metastatic castration-resistant prostate cancer (mCRPC). The aim of the phase II OPTIMABI study was to evaluate the efficacy of pharmacokinetics (PK)-guided dose escalation of abiraterone acetate (AA) in underexposed patients with mCRPC with early tumour progression. METHODS: This multicentre, non-randomised study consisted of two sequential steps. In step 1, all patients started treatment with 1000 mg of AA once daily. Abiraterone Cmin was measured 22-26 h after the last dose intake each month during the first 12 weeks of treatment. In step 2, underexposed patients (Cmin < 8.4 ng/mL) with tumour progression within the first 6 months of treatment were enrolled and received AA 1000 mg twice daily. The primary endpoint was the rate of non-progression at 12 weeks after the dose doubling. During step 1, adherence to ABI treatment was assessed using the Girerd self-reported questionnaire. A post-hoc analysis of pharmacokinetic (PK) data was conducted using Bayesian estimation of Cmin from samples collected outside the sampling guidelines (22-26 h). RESULTS: In the intention-to-treat analysis (ITT), 81 patients were included in step 1. In all, 21 (26%) patients were underexposed in step 1, and 8 of them (38%) experienced tumour progression within the first 6 months. A total of 71 patients (88%) completed the Girerd self-reported questionnaire. Of the patients, 62% had a score of 0, and 38% had a score of 1 or 2 (minimal compliance failure), without a significant difference in mean ABI Cmin in the two groups. Four patients were enrolled in step 2, and all reached the exposure target (Cmin > 8.4 ng/mL) after doubling the dose, but none met the primary endpoint. In the post-hoc analysis of PK data, 32 patients (39%) were underexposed, and ABI Cmin was independently associated with worse progression-free survival [hazard ratio (HR) 2.50, 95% confidence interval (CI) 1.07-5.81; p = 0.03], in contrast to the ITT analysis. CONCLUSION: The ITT and per-protocol analyses showed no statistical association between ABI underexposure and an increased risk of early tumour progression in patients with mCRPC, while the Bayesian estimator showed an association. However, other strategies than dose escalation at the time of progression need to be evaluated. Treatment adherence appeared to be uniformly good in the present study. Finally, the use of a Bayesian approach to recover samples collected outside the predefined blood collection time window could benefit the conduct of clinical trials based on drug monitoring. OPTIMABI trial is registered as National Clinical Trial number NCT03458247, with the EudraCT number 2017-000560-15).


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Progressão da Doença , Relação Dose-Resposta a Droga , Androstenos/administração & dosagem , Androstenos/farmacocinética , Androstenos/uso terapêutico , Acetato de Abiraterona/administração & dosagem , Acetato de Abiraterona/farmacocinética , Acetato de Abiraterona/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/sangue , Metástase Neoplásica
2.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697987

RESUMO

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Assuntos
Antineoplásicos , Proliferação de Células , Complexo I de Transporte de Elétrons , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Antineoplásicos/farmacologia , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desacopladores/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Ratos , NADH Desidrogenase/metabolismo , NADH Desidrogenase/antagonistas & inibidores
3.
BMC Pediatr ; 24(1): 196, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504218

RESUMO

BACKGROUND: Ifosfamide is a major anti-cancer drug in children with well-known renal toxicity. Understanding the mechanisms underlying this toxicity could help identify children at increased risk of toxicity. METHODS: The IFOS01 study included children undergoing ifosfamide-based chemotherapy for Ewing sarcoma or rhabdomyosarcoma. A fully evaluation of renal function was performed during and after chemotherapy. Proton nuclear magnetic resonance (NMR) and conventional biochemistry were used to detect early signs of ifosfamide-induced tubulopathy. The enzymatic activity of aldehyde dehydrogenase (ALDH) was measured in the peripheral blood lymphocytes as a marker of ifosfamide-derived chloroacetaldehyde detoxification capacity. Plasma and urine concentrations of ifosfamide and dechloroethylated metabolites were quantified. RESULTS: The 15 participants received a median total ifosfamide dose of 59 g/m2 (range: 24-102), given over a median of 7 cycles (range: 4-14). All children had acute proximal tubular toxicity during chemotherapy that was reversible post-cycle, seen with both conventional assays and NMR. After a median follow-up of 31 months, 8/13 children presented overall chronic toxicity among which 7 had decreased glomerular filtration rate. ALDH enzymatic activity showed high inter- and intra-individual variations across cycles, though overall activity looked lower in children who subsequently developed chronic nephrotoxicity. Concentrations of ifosfamide and metabolites were similar in all children. CONCLUSIONS: Acute renal toxicity was frequent during chemotherapy and did not allow identification of children at risk for long-term toxicity. A role of ALDH in late renal dysfunction is possible so further exploration of its enzymatic activity and polymorphism should be encouraged to improve the understanding of ifosfamide-induced nephrotoxicity.


Assuntos
Antineoplásicos , Rabdomiossarcoma , Sistema Urinário , Criança , Humanos , Ifosfamida/efeitos adversos , Aldeído Desidrogenase/uso terapêutico , Antineoplásicos/efeitos adversos , Rabdomiossarcoma/tratamento farmacológico
5.
Ther Drug Monit ; 46(1): 127-131, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941111

RESUMO

BACKGROUND: Venetoclax (VNX)-based regimens have demonstrated significantly favorable outcomes in patients with acute myeloid leukemia (AML) and are now becoming the standard treatment. Tyrosine kinase inhibitors are administered at a fixed dose, irrespective of body surface area or weight. For such orally targeted therapies, real-world data have highlighted a larger pharmacokinetic (PK) interindividual variability (IIV) than expected. Even if VNX PKs have been well characterized and described in the literature, only 1 clinical trial-based PK study has been conducted in patients with AML. This study aimed to evaluate the PK of VNX in AML patients. MATERIAL AND METHODS: We retrospectively analyzed all patients treated with a combination of VNX-azacitidine between January and July 2022 at our center, using at least 1 available VNX blood sample. Based on a previously published population PK model, individual PK parameters were estimated to evaluate the exposure and IIV. RESULTS: and Discussion. Twenty patients received VNX in combination with azacitidine, according to the PK data. A total of 93 plasma concentrations were collected. The dose of VNX was 400 mg, except in 7 patients who received concomitant posaconazole (VNX 70 mg). The patients' weight ranged from 49 kg to 108 kg (mean = 78 kg). Mean individual clearance was 13.5 ± 9.4 L/h with mean individual daily area under the concentration-time curves of 35.8 mg.h/L with significant IIV (coefficient of variation = 41.1%). Ten patients were still alive (8 in complete response), but all experienced at least 1 hematological toxicity of grade ≥ 3. CONCLUSIONS: Based on the observed large PK variability in the data from our real-world AML patients, the risk of drug interactions and the recommended fixed-dosage regimen of VNX therapeutic drug monitoring may be useful.


Assuntos
Leucemia Mieloide Aguda , Humanos , Estudos Retrospectivos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/induzido quimicamente , Azacitidina/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos
6.
Mol Ther Oncolytics ; 30: 103-116, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37635744

RESUMO

TG6002 is an oncolytic vaccinia virus expressing FCU1 protein, which converts 5-fluorocytosine into 5-fluorouracil. The study objectives were to assess tolerance, viral replication, 5-fluorouracil synthesis, and tumor microenvironment modifications to treatment in dogs with spontaneous malignant tumors. Thirteen dogs received one to three weekly intratumoral injections of TG6002 and 5-fluorocytosine. The viral genome was assessed in blood and tumor biopsies by qPCR. 5-Fluorouracil concentrations were measured in serum and tumor biopsies by liquid chromatography or high-resolution mass spectrometry. Histological and immunohistochemical analyses were performed. The viral genome was detected in blood (7/13) and tumor biopsies (4/11). Viral replication was suspected in 6/13 dogs. The median intratumoral concentration of 5-fluorouracil was 314 pg/mg. 5-Fluorouracil was not detected in the blood. An increase in necrosis (6/9) and a downregulation of intratumoral regulatory T lymphocytes (6/6) were observed. Viral replication, 5-fluorouracil synthesis, and tumor microenvironment changes were more frequently observed with higher TG6002 doses. This study confirmed the replicative properties, targeted chemotherapy synthesis, and reversion of the immunosuppressive tumor microenvironment in dogs with spontaneous malignant tumors treated with TG6002 and 5-fluorocytosine.

7.
Mol Oncol ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452637

RESUMO

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

8.
Cancer Chemother Pharmacol ; 91(5): 413-425, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37010549

RESUMO

PURPOSE: The objective was to develop a pharmacokinetic-pharmacodynamic (PK-PD) model linking everolimus and sorafenib exposure with biomarker dynamics and progression-free survival (PFS) based on data from EVESOR trial in patients with solid tumors treated with everolimus and sorafenib combination therapy and to simulate alternative dosing schedules for sorafenib. PATIENTS AND METHODS: Everolimus (5-10 mg once daily, qd) and sorafenib (200-400 mg twice daily, bid) were administered according to four different dosing schedules in 43 solid tumor patients. Rich PK and PD sampling for serum angiogenesis biomarkers was performed. Baseline activation of RAS/RAF/ERK (MAPK) pathway was assessed by quantification of mRNA specific gene panel in tumor biopsies. The PK-PD modeling was performed using NONMEM® software. RESULTS: An indirect response PK-PD model linking sorafenib plasma exposure with soluble vascular endothelial growth factor receptor 2 (sVEGFR2) dynamics was developed. Progression-free survival (PFS) was described by a parametric time-to-event model. Higher decreases in sVEGFR2 at day 21 and higher baseline activation of MAPK pathway were associated with longer PFS (p = 0.002 and p = 0.007, respectively). The simulated schedule sorafenib 200 mg bid 5 days-on/2 days-off + continuous everolimus 5 mg qd was associated with median PFS of 4.3 months (95% CI 1.6-14.4), whereas the median PFS in the EVESOR trial was 3.6 months (95% CI 2.7-4.2, n = 43). CONCLUSION: Sorafenib 200 mg bid 5 days-on/2 days-off + everolimus 5 mg qd continuous was selected for an additional arm of EVESOR trial to evaluate whether this simulated schedule is associated with higher clinical benefit. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01932177.


Assuntos
Everolimo , Neoplasias , Humanos , Sorafenibe/uso terapêutico , Intervalo Livre de Progressão , Fator A de Crescimento do Endotélio Vascular , Niacinamida , Compostos de Fenilureia , Resultado do Tratamento , Neoplasias/tratamento farmacológico , Biomarcadores
9.
Cancer Chemother Pharmacol ; 91(5): 361-373, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840749

RESUMO

PURPOSE: Everolimus (EVE) and sorafenib (SOR) combination was associated with synergistic activity in preclinical models. However, previous clinical studies were hampered by cumulative toxicities when both were given continuously. The academic EVESOR trial (NCT01932177) was designed to assess alternative doses and intermittent dosing schedules of EVE and SOR combination therapy to improve the benefit-risk ratio for patients with solid tumors. METHODS: EVESOR is a multiparameter dose-escalation phase I trial investigating different doses and dosing schedules, with the final objective of generating data for modeling and simulation. Patients were allocated into continuous (A and B) or intermittent (C and D) schedules to determine the recommended phase II dose (RP2D). The clinical outcomes are presented here. RESULTS: Forty-three patients were included from 2013 to 2019. Most of them had gynecological (25.6%), cholangiocarcinomas (23.2%), colorectal (14.0%), and breast cancers (11.6%). Dose-escalation up to EVE 10 mg QD and SOR 400 mg BID was possible on intermittent schedules. Five dose-limiting toxicities were observed, and dose reductions were required in 39.5% patients, stabilizing at EVE 5 mg and SOR 200 mg BID for 58.1% of them. The overall response rate was 6.3%, and disease control rate was 75.0%. The median progression-free survival (PFS) was 3.6 months. The longest median PFS were observed in cholangiocarcinomas (9.9 months), and gynecological adenocarcinomas (9.2 months). CONCLUSION: Intermittent arms were associated with improved efficacy/toxicity profiles; and EVE 5 mg QD and SOR 200 mg BID was defined a clinically feasible dose. Strong signs of efficacy were found in cholangiocarcinomas and gynecologic carcinomas. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01932177.


Assuntos
Neoplasias da Mama , Colangiocarcinoma , Humanos , Feminino , Sorafenibe , Everolimo/efeitos adversos , Niacinamida , Compostos de Fenilureia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
10.
Cancer Lett ; 555: 216030, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36496104

RESUMO

Cytidine deaminase (CDA) catalyzes the deamination of cytidine (C) and deoxycytidine (dC) to uridine and deoxyuridine, respectively. We recently showed that CDA deficiency leads to genomic instability, a hallmark of cancers. We therefore investigated whether constitutive CDA inactivation conferred a predisposition to cancer development. We developed a novel mouse model of Cda deficiency by generating Cda-knockout mice. Cda+/+ and Cda-/- mice did not differ in lifetime phenotypic or behavioral characteristics, or in the frequency or type of spontaneous cancers. However, the frequency of chemically induced tumors in the colon was significantly lower in Cda-/- mice. An analysis of primary kidney cells from Cda-/- mice revealed an excess of C and dC associated with significantly higher frequencies of sister chromatid exchange and ultrafine anaphase bridges and lower Parp-1 activity than in Cda+/+ cells. Our results suggest that, despite inducing genetic instability, an absence of Cda limits the number of chemically induced tumors. These results raise questions about whether a decrease in basal Parp-1 activity can protect against inflammation-driven tumorigenesis; we discuss our findings in light of published data for the Parp-1-deficient mouse model.


Assuntos
Neoplasias do Colo , Citidina Desaminase , Animais , Camundongos , Citidina Desaminase/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Instabilidade Genômica , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética
11.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396334

RESUMO

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Assuntos
Glucose , Hexosaminas , Receptores ErbB/genética , Glucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Humanos , Nutrientes
12.
Nat Commun ; 13(1): 173, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013311

RESUMO

Mechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5'-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that "man-made" fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA de Neoplasias/genética , Tolerância a Medicamentos/genética , Fluoruracila/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Replicação do DNA , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Halogenação , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ribossomos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Eur J Hosp Pharm ; 29(5): 284-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978219

RESUMO

Risk management for workers involved in the handling and preparation of cytotoxic drugs is challenging. This study aims to investigate drug contamination of the exterior surfaces of cytotoxic drug vials. Two batches of commercially available cytotoxic drugs in unprotected vials (ifosfamide, etoposide phosphate and cyclophosphamide) and plastic shrink wrap vials (doxorubicin, cytarabine and busulfan) were tested without removing the flip-off cap or the plastic wrap, and without prewashing. The results showed significant trace amounts of cytotoxic drugs on the exterior surfaces in both unprotected (eg, cyclophosphamide, ifosfamide) and protected plastic shrink wrap vials (eg, cytarabine), indicating that the secondary packaging of protected vials does not systematically prevent exposure to the handlers. These results focus on the need for guidelines to prevent cytotoxic vial contamination and safety recommendations for staff in the handling and storage of these vials.


Assuntos
Antineoplásicos , Exposição Ocupacional , Antineoplásicos/análise , Ciclofosfamida/análise , Citarabina , Contaminação de Medicamentos/prevenção & controle , Embalagem de Medicamentos , Monitoramento Ambiental/métodos , Humanos , Ifosfamida/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Plásticos
14.
Cells ; 10(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34831141

RESUMO

Enzymes of nucleoside and nucleotide metabolism regulate important cellular processes with potential impacts on nucleotide-unrelated parameters. We have used a set of CRISPR/Cas9-modified cell models expressing both, one, or none of the 5'-nucleotidases cN-II and CD73, together with RNA sequencing and targeted metabolomics, to decipher new regulatory roles of these proteins. We observed important transcriptional modifications between models as well as upon exposure to adenosine. Metabolite content varied differently between cell models in response to adenosine exposure but was rather similar in control conditions. Our original cell models allowed us to identify a new unobvious link between proteins in the nucleotide metabolism and other cellular pathways. Further analyses of our models, including additional experiments, could help us to better understand some of the roles played by these enzymes.


Assuntos
5'-Nucleotidase/deficiência , Transcrição Gênica , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
BMC Biol ; 19(1): 228, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674701

RESUMO

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Assuntos
Neoplasias , Núcleosídeo-Difosfato Quinase , Animais , Membranas Intracelulares , Camundongos , Mitocôndrias , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo
16.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34451893

RESUMO

BACKGROUND: Different liquid chromatography tandem mass spectrometry (LC-MS/MS) methods have been published for quantification of monoclonal antibodies (mAbs) in plasma but thus far none allowed the simultaneous quantification of several mAbs, including immune checkpoint inhibitors. We developed and validated an original multiplex LC-MS/MS method using a ready-to-use kit to simultaneously assay 7 mAbs (i.e., bevacizumab, cetuximab, ipilimumab, nivolumab, pembrolizumab, rituximab and trastuzumab) in plasma. This method was next cross-validated with respective reference methods (ELISA or LC-MS/MS). METHODS: The mAbXmise kit was used for mAb extraction and full-length stable-isotope-labeled antibodies as internal standards. The LC-MS/MS method was fully validated following current EMA guidelines. Each cross validation between reference methods and ours included 16-28 plasma samples from cancer patients. RESULTS: The method was linear from 2 to 100 µg/mL for all mAbs. Inter- and intra-assay precision was <14.6% and accuracy was 90.1-111.1%. The mean absolute bias of measured concentrations between multiplex and reference methods was 10.6% (range 3.0-19.9%). CONCLUSIONS: We developed and cross-validated a simple, accurate and precise method that allows the assay of up to 7 mAbs. Furthermore, the present method is the first to offer a simultaneous quantification of three immune checkpoint inhibitors likely to be associated in patients.

17.
NAR Cancer ; 3(3): zcab032, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34409299

RESUMO

5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat patients with solid tumours, such as colorectal and pancreatic cancers. Colorectal cancer (CRC) is the second leading cause of cancer-related death and half of patients experience tumour recurrence. Used for over 60 years, 5-FU was long thought to exert its cytotoxic effects by altering DNA metabolism. However, 5-FU mode of action is more complex than previously anticipated since 5-FU is an extrinsic source of RNA modifications through its ability to be incorporated into most classes of RNA. In particular, a recent report highlighted that, by its integration into the most abundant RNA, namely ribosomal RNA (rRNA), 5-FU creates fluorinated active ribosomes and induces translational reprogramming. Here, we review the historical knowledge of 5-FU mode of action and discuss progress in the field of 5-FU-induced RNA modifications. The case of rRNA, the essential component of ribosome and translational activity, and the plasticity of which was recently associated with cancer, is highlighted. We propose that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and ultimately to relapse.

18.
Biomedicines ; 9(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070939

RESUMO

Pembrolizumab is a humanized immunoglobulin G4-kappa anti-PD1 antibody used in the treatment of different solid tumors or haematological malignancies. A liquid chromatography coupled with a high resolution mass spectrometry (orbitrap technology) method was fully developed, optimized, and validated for quantitative analysis of pembrolizumab in human plasma. A mass spectrometry assay was used for the first time a full-length stable isotope-labelled pembrolizumab-like (Arginine 13C6-15N4 and Lysine 13C6-15N2) as an internal standard; the sample preparation was based on albumin depletion and trypsin digestion and, finally, one surrogate peptide was quantified in positive mode. The assay showed good linearity over the range of 1-100 µg/mL, a limit of quantification at 1 µg/mL, excellent accuracy from 4.4% to 5.1%, and also a between-day precision below 20% at the limit of quantification. In parallel, an in-house ELISA was developed with a linearity range from 2.5 to 50 µg/mL. Then, results were obtained from 70 plasma samples of cancer patients that were treated with pembrolizumab and quantified with both methods were compared using the Passing-Bablok regression analysis and Bland-Altman plotting. The LC-MS/HRMS method is easy to implement in the laboratory for use in the context of PK/PD studies, clinical trials, or therapeutic drug monitoring.

19.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806585

RESUMO

Rituximab is a chimeric immunoglobulin G1-kappa (IgG1κ) antibody targeting the CD20 antigen on B-lymphocytes. Its applications are various, such as for the treatment of chronic lymphoid leukemia or non-Hodgkin's lymphoma in oncology, and it can also be used in the treatment of certain autoimmune diseases. Several studies support the interest in therapeutic drug monitoring to optimize dosing regimens of rituximab. Thus, two different laboratories have developed accurate and reproductive methods to quantify rituximab in human plasma: one using liquid chromatography quadripolar tandem mass spectrometer (LC-MS/MS) and the other, liquid chromatography orbitrap tandem mass spectrometer (LC-MS/HRMS). For both assays, quantification was based on albumin depletion or IgG-immunocapture, surrogate peptide analysis, and full-length stable isotope-labeled rituximab. With LC-MS/MS, the concentration range was from 5 to 500 µg/mL, the within- and between-run precisions were <8.5%, and the limit of quantitation was 5 µg/mL. With LC-MS/HRMS, the concentration range was from 10 to 200 µg/mL, the within- and between-run accuracy were <11.5%, and the limit of quantitation was 2 µg/mL. Rituximab plasma concentrations from 63 patients treated for vasculitis were compared. Bland-Altman analysis and Passing-Bablok regression showed the interchangeability between these two methods. Overall, these methods were robust and reliable and could be applied to routine clinical samples.


Assuntos
Antineoplásicos Imunológicos/sangue , Cromatografia Líquida/métodos , Linfoma/sangue , Rituximab/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Vasculite/sangue , Antineoplásicos Imunológicos/administração & dosagem , Monitoramento de Medicamentos , Humanos , Marcação por Isótopo , Linfoma/tratamento farmacológico , Linfoma/patologia , Reprodutibilidade dos Testes , Rituximab/administração & dosagem , Vasculite/tratamento farmacológico , Vasculite/patologia
20.
J Pharm Anal ; 11(1): 77-87, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33717614

RESUMO

5-Fluorouracil (5-FU) is an anticancer drug extensively used for different cancers. Intracellular metabolic activation leads to several nucleoside and nucleotide metabolites essential to exert its cytotoxic activity on multiple cellular targets such as enzymes, DNA and RNA. In this paper, we describe the development of a method based on liquid chromatography coupled with high resolution mass spectrometry suitable for the simultaneous determination of the ten anabolic metabolites (nucleoside, nucleotide and sugar nucleotide) of 5-FU. The chromatographic separation was optimized on a porous graphitic carbon column allowing the analysis of the metabolites of 5-FU as well as endogenous nucleotides. The detection was performed on an Orbitrap® tandem mass spectrometer. Linearity of the method was verified in intracellular content and in RNA extracts. The limit of detection was equal to 12 pg injected on column for nucleoside metabolites of 5-FU and 150 pg injected on column for mono- and tri-phosphate nucleotide metabolites. Matrix effect was evaluated in cellular contents, DNA and RNA extracts for nucleoside and nucleotides metabolites. The method was successfully applied to i) measure the proportion of each anabolic metabolite of 5-FU in cellular contents, ii) follow the consequence of inhibition of enzymes on the endogenous nucleotide pools, iii) study the incorporation of metabolites of 5-FU into RNA and DNA, and iv) to determine the incorporation rate of 5-FUrd into 18 S and 28 S sub-units of rRNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA