Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Semin Nucl Med ; 54(3): 438-455, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688770

RESUMO

Molecular imaging has emerged as an integral part of oncologic imaging. Given the physiologic changes that precede anatomic changes, molecular imaging can enable early detection of disease and monitoring of response. [18F] Fluorodeoxyglucose (FDG) Positron emission tomography (PET) is the predominant molecular imaging modality used in oncologic assessment and can be performed using PET/CT or PET/MR. In pediatric patients, PET/MRI imaging is generally preferred due to low radiation exposure and PET/MRI is particularly advantageous for imaging musculoskeletal (MSK) diseases, as MRI provides superior characterization of tissue changes as compared to CT. In this article, we provide an overview of the typical role of PET CT/MRI in assessment of some common pediatric malignancies and benign MSK diseases with case examples. We also discuss the relative advantages of PET/MRI compared to PET/CT, and review published data with a primary focus on the use of PET/MR.


Assuntos
Imageamento por Ressonância Magnética , Doenças Musculoesqueléticas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Imageamento por Ressonância Magnética/métodos , Doenças Musculoesqueléticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Criança , Imagem Multimodal/métodos , Imagem Molecular/métodos
2.
Semin Nucl Med ; 54(3): 332-339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433024

RESUMO

Soft tissue sarcomas are a rare and heterogenous group of tumors that account for 2% of all cancer-related deaths. Molecular imaging with FDG PET can offer valuable metabolic information to help inform clinical management of soft tissue sarcomas that is unique and complementary to conventional diagnostic imaging techniques. FDG PET imaging often correlates with tumor grade, can help guide biopsy, and frequently detects additional sites of disease compared to conventional imaging in patients being considered for definitive or salvage therapy. Traditional size-based evaluation of treatment response is often inadequate in soft tissue sarcoma and changes in metabolic activity can add significant value to interim and end of treatment imaging for high-grade sarcomas. FDG PET can be used for detection of recurrence or malignant transformation and thus play a vital role in surveillance. This article reviews the evolving role of FDG PET in initial diagnosis, staging, treatment response assessment, and restaging. Further studies on the use of FDG PET in soft sarcoma are needed, particularly for rare histopathologic subtypes.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Sarcoma , Humanos , Sarcoma/diagnóstico por imagem , Sarcoma/patologia , Tomografia por Emissão de Pósitrons/métodos , Imagem Molecular/métodos
3.
Clin Nucl Med ; 48(1): 58-60, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469060

RESUMO

ABSTRACT: DOTATATE PET/CT is frequently used to evaluate indeterminant pulmonary nodules suspected to be pulmonary carcinoid. We report an unexpected case of pulmonary hamartoma demonstrating 64Cu-DOTATATE uptake in a 43-year-old woman with a slowly enlarging pulmonary nodule. Histopathological staining showed somatostatin receptor 2 expression on vascular endothelial cells and a proportion of cartilage and smooth muscle cells within the hamartoma.


Assuntos
Hamartoma , Neoplasias Pulmonares , Tumores Neuroendócrinos , Compostos Organometálicos , Feminino , Humanos , Adulto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Cobre , Tumores Neuroendócrinos/patologia , Células Endoteliais/patologia , Receptores de Somatostatina/metabolismo , Compostos Organometálicos/metabolismo , Neoplasias Pulmonares/patologia , Hamartoma/diagnóstico por imagem
4.
Transl Oncol ; 22: 101438, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35659674

RESUMO

There has been tremendous growth in the development of theragnostics for personalized cancer diagnosis and treatment over the past two decades. In prostate cancer, the new generation of prostate specific membrane antigen (PSMA) small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and allow their therapeutic counterparts to deliver effective tumor doses while minimizing normal tissue toxicity. The PSMA targeted small molecule positron emission tomography (PET) agents 18F-DCFPyL (2-(3-{1-carboxy-5-((6-(18)F-fluoro-pyridine-3-carbonyl)-amino)-pentyl}-ureido)-pentanedioic acid) and Gallium-68 (68Ga)-PSMA-11 have been approved by the United States Food and Drug Administration (FDA) for newly diagnosed high risk prostate cancer patients and for patients with biochemical recurrence. More recently, the Phase III VISION trial showed that Lutetium-177 (177Lu)-PSMA-617 treatment increases progression-free survival and overall survival in patients with heavily pre-treated advanced PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). Here, we review the PSMA targeted theragnostic pairs under clinical investigation for detection and treatment of metastatic prostate cancer.

5.
Oral Oncol ; 125: 105702, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34991004

RESUMO

OBJECTIVE: To show that augmented reality (AR) visualization of single-photon emission computed tomography (SPECT)/computed tomography (CT) data in 3D can be used to accurately localize targets in the head and neck region. MATERIALS AND METHODS: Eight head and neck styrofoam phantoms were painted with a mixture of radioactive solution (Tc-99m) detectable with a handheld gamma probe and fluorescent ink visible only under ultraviolet (UV) light to create 10-20 simulated lymph nodes on their surface. After obtaining SPECT/CT images of these phantoms, virtual renderings of the nodes were generated from the SPECT/CT data and displayed using a commercially available AR headset. For each of three physician evaluators, the time required to localize lymph node targets was recorded (1) using the gamma probe alone and (2) using the gamma probe while wearing the AR headset. In addition, the surface localization accuracy when using the AR headset was evaluated by measuring the misalignment between the locations visually marked by the evaluators and the ground truth locations identified using UV stimulation of the ink at the site of the nodes. RESULTS: For all three evaluators, using the AR headset significantly reduced the time to detect targets (P = 0.012, respectively) compared to using the gamma probe alone. The average misalignment between the location marked by the evaluators and the ground truth location was 8.6 mm. CONCLUSION: AR visualization of SPECT/CT data in 3D allows for accurate localization of targets in the head and neck region, and may reduce the localization time of targets.


Assuntos
Realidade Aumentada , Melanoma , Linfonodo Sentinela , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Melanoma/cirurgia , Biópsia de Linfonodo Sentinela/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos
6.
Mol Imaging Biol ; 23(4): 614-623, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33469884

RESUMO

PURPOSE: To evaluate the diagnostic performance and clinical utility of 18F-fluciclovine PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC). METHODS: 18F-Fluciclovine scans of 165 consecutive men with BCR after primary definitive treatment with prostatectomy (n = 102) or radiotherapy (n = 63) were retrospectively evaluated. Seventy patients had concurrent imaging with at least one other conventional modality (CT (n = 31), MRI (n = 31), or bone scan (n = 26)). Findings from 18F-fluciclovine PET were compared with those from conventional imaging modalities. The positivity rate and impact of 18F-fluciclovine PET on patient management were recorded. In 33 patients who underwent at least one other PET imaging (18F-NaF PET/CT (n = 12), 68Ga-PSMA11 PET/CT (n = 5), 18F-DCFPyL PET/CT (n = 20), and 68Ga-RM2 PET/MRI (n = 5)), additional findings were evaluated. RESULTS: The overall positivity rate of 18F-fluciclovine PET was 67 %, which, as expected, increased with higher prostate-specific antigen (PSA) levels (ng/ml): 15 % (PSA < 0.5), 50 % (0.5 ≤ PSA < 1), 56 % (1 ≤ PSA < 2), 68 % (2 ≤ PSA < 5), and 94 % (PSA ≥ 5), respectively. One hundred and two patients (62 %) had changes in clinical management based on 18F-fluciclovine PET findings. Twelve of these patients (12 %) had lesion localization on 18F-fluciclovine PET, despite negative conventional imaging. Treatment plans of 14 patients with negative 18F-fluciclovine PET were changed based on additional PET imaging with a different radiopharmaceutical. CONCLUSION: 18F-Fluciclovine PET/CT remains a useful diagnostic tool in the workup of patients with BCR PC, changing clinical management in 62 % of participants in our cohort.


Assuntos
Ácidos Carboxílicos , Ciclobutanos , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Compostos Radiofarmacêuticos , Estudos Retrospectivos
7.
Semin Nucl Med ; 51(4): 392-403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33455722

RESUMO

Post-transplant lymphoproliferative disorders (PTLD) are a spectrum of heterogeneous lymphoproliferative conditions that are serious and possibly fatal complications after solid organ or allogenic hematopoietic stem cell transplantation. Most PTLD are attributed to Epstein-Barr virus reactivation in B-cells in the setting of immunosuppression after transplantation. Early diagnosis, accurate staging, and timely treatment are of vital importance to reduce morbidity and mortality. Given the often nonspecific clinical presentation and disease heterogeneity of PTLD, tissue biopsy and histopathological analysis are essential to establish diagnosis and most importantly, determine the subtype of PTLD, which guides treatment options. Advanced imaging modalities such as 18F-FDG PET/CT have played an increasingly important role and have shown high sensitivity and specificity in detection, staging, and assessing treatment response in multiple clinical studies over the last two decades. However, larger multicenter prospective validation is still needed to further establish the clinical utility of PET imaging in the management of PTLD. Significantly, new hybrid imaging modalities such as PET/MR may help reduce radiation exposure, which is especially important in pediatric transplant patients.


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Criança , Fluordesoxiglucose F18 , Herpesvirus Humano 4 , Humanos , Transtornos Linfoproliferativos/diagnóstico por imagem , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/terapia , Estudos Multicêntricos como Assunto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
9.
J Nucl Med ; 61(4): 546-551, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31628216

RESUMO

18F-DCFPyL (2-(3-{1-carboxy-5-[(6-18F-fluoropyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) is a promising PET radiopharmaceutical targeting prostate-specific membrane antigen (PSMA). We present our experience with this single-academic-center prospective study evaluating the positivity rate of 18F-DCFPyL PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC). Methods: We prospectively enrolled 72 men (52-91 y old; mean ± SD, 71.5 ± 7.2) with BCR after primary definitive treatment with prostatectomy (n = 42) or radiotherapy (n = 30). The presence of lesions compatible with PC was evaluated by 2 independent readers. Fifty-nine patients had scans concurrent with at least one other conventional scan: bone scanning (24), CT (21), MR (20), 18F-fluciclovine PET/CT (18), or 18F-NaF PET (14). Findings from 18F-DCFPyL PET/CT were compared with those from other modalities. Impact on patient management based on 18F-DCFPyL PET/CT was recorded from clinical chart review. Results:18F-DCFPyL PET/CT had an overall positivity rate of 85%, which increased with higher prostate-specific antigen (PSA) levels (ng/mL): 50% (PSA < 0.5), 69% (0.5 ≤ PSA < 1), 100% (1 ≤ PSA < 2), 91% (2 ≤ PSA < 5), and 96% (PSA ≥ 5). 18F-DCFPyL PET detected more lesions than conventional imaging. For anatomic imaging, 20 of 41 (49%) CT or MRI scans had findings congruent with 18F-DCFPyL, whereas 18F-DCFPyL PET was positive in 17 of 41 (41%) cases with negative CT or MRI findings. For bone imaging, 26 of 38 (68%) bone or 18F-NaF PET scans were congruent with 18F-DCFPyL PET, whereas 18F-DCFPyL PET localized bone lesions in 8 of 38 (21%) patients with negative results on bone or 18F-NaF PET scans. In 8 of 18 (44%) patients, 18F-fluciclovine PET had located the same lesions as did 18F-DCFPyL PET, whereas 5 of 18 (28%) patients with negative 18F-fluciclovine findings had positive 18F-DCFPyL PET findings and 1 of 18 (6%) patients with negative 18F-DCFPyL findings had uptake in the prostate bed on 18F-fluciclovine PET. In the remaining 4 of 18 (22%) patients, 18F-DCFPyL and 18F-fluciclovine scans showed different lesions. Lastly, 43 of 72 (60%) patients had treatment changes after 18F-DCFPyL PET and, most noticeably, 17 of these patients (24% total) had lesion localization only on 18F-DCFPyL PET, despite negative results on conventional imaging. Conclusion:18F-DCFPyL PET/CT is a promising diagnostic tool in the work-up of biochemically recurrent PC, given the high positivity rate as compared with Food and Drug Administration-approved currently available imaging modalities and its impact on clinical management in 60% of patients.


Assuntos
Centros Médicos Acadêmicos , Lisina/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Ureia/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Antígeno Prostático Específico/metabolismo , Recidiva
10.
Radiol Case Rep ; 15(2): 117-119, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31768196

RESUMO

Fungal endocarditis is a rare subtype of infective endocarditis that often presents with nonspecific symptoms in patients with complex medical histories, making diagnosis challenging. Patients with a history of ALL may present with congestive heart failure, chemo-induced cardiomyopathy, acute coronary syndrome, cardiac lymphomatous metastasis, or infections. We present the case of a patient with a history of ALL who presented with acute coronary syndrome and imaging concerning for primary cardiac lymphoma, when in fact the patient ended up suffering from culture proven fungal endocarditis.

11.
PLoS One ; 13(11): e0206897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427907

RESUMO

Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner's syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria have higher telomere H4K8 acetylation and shorter telomeres independent of cell proliferation rates. Ectopic expression of KAT mutant hnRNPA2 rescued telomere length possibly due to impaired H4K8 acetylation coupled with inability to activate telomerase expression. The phenotypic outcome of telomere shortening in immortalized cells included chromosomal instability (end-fusions) and telomerase activation, typical of an oncogenic transformation; while in non-telomerase expressing fibroblasts, mitochondrial dysfunction induced-telomere attrition resulted in senescence. Our findings provide a mechanistic association between dysfunctional mitochondria and telomere loss and therefore describe a novel epigenetic signal for telomere length maintenance.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Histonas/metabolismo , Mitocôndrias/metabolismo , Encurtamento do Telômero/genética , Telômero/metabolismo , Acetilação , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica/fisiologia , Epigênese Genética/fisiologia , Fibroblastos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , Telomerase/metabolismo
13.
J Shoulder Elbow Surg ; 26(12): 2067-2077, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28893546

RESUMO

BACKGROUND: The purpose of this study was to determine the value of magnetic resonance imaging (MRI) and ultrasound-based imaging strategies in the evaluation of a hypothetical population with a symptomatic full-thickness supraspinatus tendon (FTST) tear using formal cost-effectiveness analysis. METHODS: A decision analytic model from the health care system perspective for 60-year-old patients with symptoms secondary to a suspected FTST tear was used to evaluate the incremental cost-effectiveness of 3 imaging strategies during a 2-year time horizon: MRI, ultrasound, and ultrasound followed by MRI. Comprehensive literature search and expert opinion provided data on cost, probability, and quality of life estimates. The primary effectiveness outcome was quality-adjusted life-years (QALYs) through 2 years, with a willingness-to-pay threshold set to $100,000/QALY gained (2016 U.S. dollars). Costs and health benefits were discounted at 3%. RESULTS: Ultrasound was the least costly strategy ($1385). MRI was the most effective (1.332 QALYs). Ultrasound was the most cost-effective strategy but was not dominant. The incremental cost-effectiveness ratio for MRI was $22,756/QALY gained, below the willingness-to-pay threshold. Two-way sensitivity analysis demonstrated that MRI was favored over the other imaging strategies over a wide range of reasonable costs. In probabilistic sensitivity analysis, MRI was the preferred imaging strategy in 78% of the simulations. CONCLUSION: MRI and ultrasound represent cost-effective imaging options for evaluation of the patient thought to have a symptomatic FTST tear. The results indicate that MRI is the preferred strategy based on cost-effectiveness criteria, although the decision between MRI and ultrasound for an imaging center is likely to be dependent on additional factors, such as available resources and workflow.


Assuntos
Imageamento por Ressonância Magnética/economia , Lesões do Manguito Rotador/diagnóstico por imagem , Ultrassonografia/economia , Análise Custo-Benefício , Humanos , Pessoa de Meia-Idade , Probabilidade , Qualidade de Vida , Anos de Vida Ajustados por Qualidade de Vida , Literatura de Revisão como Assunto , Lesões do Manguito Rotador/complicações
14.
Proc Natl Acad Sci U S A ; 114(28): E5549-E5558, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652336

RESUMO

Neutral sphingomyelinase 2 (nSMase2, product of the SMPD3 gene) is a key enzyme for ceramide generation that is involved in regulating cellular stress responses and exosome-mediated intercellular communication. nSMase2 is activated by diverse stimuli, including the anionic phospholipid phosphatidylserine. Phosphatidylserine binds to an integral-membrane N-terminal domain (NTD); however, how the NTD activates the C-terminal catalytic domain is unclear. Here, we identify the complete catalytic domain of nSMase2, which was misannotated because of a large insertion. We find the soluble catalytic domain interacts directly with the membrane-associated NTD, which serves as both a membrane anchor and an allosteric activator. The juxtamembrane region, which links the NTD and the catalytic domain, is necessary and sufficient for activation. Furthermore, we provide a mechanistic basis for this phenomenon using the crystal structure of the human nSMase2 catalytic domain determined at 1.85-Å resolution. The structure reveals a DNase-I-type fold with a hydrophobic track leading to the active site that is blocked by an evolutionarily conserved motif which we term the "DK switch." Structural analysis of nSMase2 and the extended N-SMase family shows that the DK switch can adopt different conformations to reposition a universally conserved Asp (D) residue involved in catalysis. Mutation of this Asp residue in nSMase2 disrupts catalysis, allosteric activation, stimulation by phosphatidylserine, and pharmacological inhibition by the lipid-competitive inhibitor GW4869. Taken together, these results demonstrate that the DK switch regulates ceramide generation by nSMase2 and is governed by an allosteric interdomain interaction at the membrane interface.


Assuntos
Sítio Alostérico , Ceramidas/biossíntese , Esfingomielina Fosfodiesterase/química , Compostos de Anilina/química , Compostos de Benzilideno/química , Domínio Catalítico , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Lipídeos/química , Células MCF-7 , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae , Transdução de Sinais
15.
Cell Discov ; 2: 16045, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990297

RESUMO

Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling, which induces global change in nuclear gene expression ultimately contributing to various human pathologies including cancer. Recent studies suggest that these mitochondrial changes cause transcriptional reprogramming of nuclear genes although the mechanism of this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus retrograde signaling regulates chromatin acetylation and alters nuclear gene expression through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed when mitochondrial DNA content is restored to near normal cell levels. We show that the mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4 through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg 50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8 acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for transcriptional activation. We found that the previously described mitochondria-to-nucleus retrograde signaling-mediated transformation of C2C12 cells caused an increased expression of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic mechanism that may have a role in cancer and other pathologies.

16.
Cell Chem Biol ; 23(9): 1103-1112, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27593110

RESUMO

Protein kinases are attractive therapeutic targets because their dysregulation underlies many diseases, including cancer. The high conservation of the kinase domain and the evolution of drug resistance, however, pose major challenges to the development of specific kinase inhibitors. We recently discovered selective Src kinase inhibitors from a DNA-templated macrocycle library. Here, we reveal the structural basis for how these inhibitors retain activity against a disease-relevant, drug-resistant kinase mutant, while maintaining Src specificity. We find that these macrocycles display a degree of modularity: two of their three variable groups interact with sites on the kinase that confer selectivity, while the third group interacts with the universally conserved catalytic lysine and thereby retains the ability to inhibit the "gatekeeper" kinase mutant. We also show that these macrocycles inhibit migration of MDA-MB-231 breast tumor cells. Our findings establish intracellular kinase inhibition by peptidic macrocycles, and inform the development of potent and specific kinase inhibitors.


Assuntos
Compostos Macrocíclicos/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Compostos Macrocíclicos/química , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinases da Família src/metabolismo
17.
Nucleic Acids Res ; 43(16): 8089-99, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26220180

RESUMO

8-Oxo-7,8,-dihydro-2'-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala(510) and Asn(513), play differential roles in dNTP selectivity. Specifically, Ala(510) and Asn(513) facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases.


Assuntos
DNA Polimerase beta/química , Nucleotídeos de Desoxiguanina/química , Alanina/química , Asparagina/química , Domínio Catalítico , DNA Polimerase beta/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Desoxirribonucleotídeos/metabolismo , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Humanos , Cinética , Ligação Proteica
18.
Front Microbiol ; 5: 93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653719

RESUMO

Decoding of aberrant mRNAs leads to unproductive ribosome stalling and sequestration of components of the translation machinery. Bacteria have evolved three seemingly independent pathways to resolve stalled translation complexes. The trans-translation process, orchestrated by the hybrid transfer-messenger RNA (tmRNA) and its essential protein co-factor, small protein B (SmpB), is the principal translation quality control system for rescuing unproductively stalled ribosomes. Two specialized alternative rescue pathways, coordinated by ArfA and ArfB, have been recently discovered. The SmpB-tmRNA mediated trans-translation pathway, in addition to re-mobilizing stalled translation complexes, co-translationally appends a degradation tag to the associated nascent polypeptides, marking them for proteolysis by various cellular proteases. Another unique feature of trans-translation, not shared by the alternative rescue pathways, is the facility to recruit ribonuclease R (RNase R) for targeted degradation of non-stop mRNAs, thus preventing further futile cycles of translation. The distinct C-terminal lysine-rich (K-rich) domain of RNase R is essential for its recruitment to stalled ribosomes. To gain new insights into the structure and function of RNase R, we investigated its global architecture, the spatial arrangement of its distinct domains, and the identities of key functional residues in its unique K-rich domain. Small-angle X-ray scattering models of RNase R reveal a tri-lobed structure with flexible N- and C-terminal domains, and suggest intimate contacts between the K-rich domain and the catalytic core of the enzyme. Alanine-scanning mutagenesis of the K-rich domain, in the region spanning residues 735 and 750, has uncovered the precise amino acid determinants required for the productive engagement of RNase R on tmRNA-rescued ribosomes. Theses analyses demonstrate that alanine substitution of conserved residues E740 and K741result in profound defects, not only in the recruitment of RNase R to rescued ribosomes but also in the targeted decay of non-stop mRNAs. Additionally, an RNase R variant with alanine substitution at residues K749 and K750 exhibits extensive defects in ribosome enrichment and non-stop mRNA decay. In contrast, alanine substitution of additional conserved residues in this region has no effect on the known functions of RNase R. In vitro RNA degradation assays demonstrate that the consequential substitutions (RNase R(E740A/K741A) and RNase R(K749A/K750A)) do not affect the ability of the enzyme to degrade structured RNAs, indicating that the observed defect is specific to the trans-translation related activities of RNase R. Taken together, these findings shed new light on the global architecture of RNase R and provide new details of how this versatile RNase effectuates non-stop mRNA decay on tmRNA-rescued ribosomes.

19.
Nucleic Acids Res ; 41(16): 7947-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804760

RESUMO

Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function.


Assuntos
Proteínas de Ligação a DNA/química , Metiltransferases/química , Proteínas Mitocondriais/química , S-Adenosilmetionina/química , Fatores de Transcrição/química , Animais , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligantes , Metiltransferases/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Proteica , S-Adenosilmetionina/metabolismo , Fatores de Transcrição/metabolismo
20.
Structure ; 20(11): 1940-7, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23022348

RESUMO

MTERF4 is the first MTERF family member shown to bind RNA and plays an essential role as a regulator of ribosomal biogenesis in mammalian mitochondria. It forms a complex with the rRNA methyltransferase NSUN4 and recruits it to the large ribosomal subunit. In this article, we characterize the interaction between both proteins, demonstrate that MTERF4 strongly stimulates the specificity of NSUN4 during in vitro methylation experiments, and present the 2.0 Å resolution crystal structure of the MTERF4:NSUN4 protein complex, lacking 48 residues of the MTERF4 C-terminal acidic tail, bound to S-adenosyl-L-methionine, thus revealing the nature of the interaction between both proteins and the structural conservation of the most divergent of the human MTERF family members. Moreover, the structure suggests a model for RNA binding by the MTERF4:NSUN4 complex, providing insight into the mechanism by which an MTERF family member facilitates rRNA methylation.


Assuntos
Metiltransferases/química , RNA Ribossômico/metabolismo , Fatores de Transcrição/química , Sequência de Aminoácidos , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA