Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G265-G278, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431575

RESUMO

Excessive alcohol intake is a major risk factor for pancreatitis, sensitizing the exocrine pancreas to stressors by mechanisms that remain obscure. Impaired autophagy drives nonalcoholic pancreatitis, but the effects of ethanol (EtOH) and alcoholic pancreatitis on autophagy are poorly understood. Here, we find that ethanol reduces autophagosome formation in pancreatic acinar cells, both in a mouse model of alcoholic pancreatitis induced by a combination of EtOH diet and cerulein (a CCK ortholog) and in EtOH+CCK-treated acinar cells (ex vivo model). Ethanol treatments decreased pancreatic level of LC3-II, a key mediator of autophagosome formation. This was caused by ethanol-induced upregulation of ATG4B, a cysteine protease that, cell dependently, regulates the balance between cytosolic LC3-I and membrane-bound LC3-II. We show that ATG4B negatively regulates LC3-II in acinar cells subjected to EtOH treatments. Ethanol raised ATG4B level by inhibiting its degradation, enhanced ATG4B enzymatic activity, and strengthened its interaction with LC3-II. We also found an increase in ATG4B and impaired autophagy in a dissimilar, nonsecretagogue model of alcoholic pancreatitis induced by EtOH plus palmitoleic acid. Adenoviral ATG4B overexpression in acinar cells greatly reduced LC3-II and inhibited autophagy. Furthermore, it aggravated trypsinogen activation and necrosis, mimicking key responses of ex vivo alcoholic pancreatitis. Conversely, shRNA Atg4B knockdown enhanced autophagosome formation and alleviated ethanol-induced acinar cell damage. The results reveal a novel mechanism, whereby ethanol inhibits autophagosome formation and thus sensitizes pancreatitis, and a key role of ATG4B in ethanol's effects on autophagy. Enhancing pancreatic autophagy, particularly by downregulating ATG4B, could be beneficial in mitigating the severity of alcoholic pancreatitis.NEW & NOTEWORTHY Ethanol sensitizes mice and humans to pancreatitis, but the underlying mechanisms remain obscure. Autophagy is important for maintaining pancreatic acinar cell homeostasis, and its impairment drives pancreatitis. This study reveals a novel mechanism, whereby ethanol inhibits autophagosome formation through upregulating ATG4B, a key cysteine protease. ATG4B upregulation inhibits autophagy in acinar cells and aggravates pathological responses of experimental alcoholic pancreatitis. Enhancing pancreatic autophagy, particularly by down-regulating ATG4B, could be beneficial for treatment of alcoholic pancreatitis.


Assuntos
Cisteína Proteases , Pancreatite Alcoólica , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Etanol/farmacologia , Pancreatite Alcoólica/genética , Regulação para Cima
2.
Cell Mol Gastroenterol Hepatol ; 13(2): 599-622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34610499

RESUMO

BACKGROUND: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS: We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS: Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS: The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.


Assuntos
Pâncreas , Pancreatite , Células Acinares/metabolismo , Animais , Autofagossomos , Autofagia , Camundongos , Pancreatite/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/farmacologia
3.
Gastroenterology ; 154(3): 704-718.e10, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29079517

RESUMO

BACKGROUND & AIMS: Acute pancreatitis is characterized by premature intracellular activation of digestive proteases within pancreatic acini and a consecutive systemic inflammatory response. We investigated how these processes interact during severe pancreatitis in mice. METHODS: Pancreatitis was induced in C57Bl/6 wild-type (control), cathepsin B (CTSB)-knockout, and cathepsin L-knockout mice by partial pancreatic duct ligation with supramaximal caerulein injection, or by repetitive supramaximal caerulein injections alone. Immune cells that infiltrated the pancreas were characterized by immunofluorescence detection of Ly6g, CD206, and CD68. Macrophages were isolated from bone marrow and incubated with bovine trypsinogen or isolated acinar cells; the macrophages were then transferred into pancreatitis control or cathepsin-knockout mice. Activities of proteases and nuclear factor (NF)-κB were determined using fluorogenic substrates and trypsin activity was blocked by nafamostat. Cytokine levels were measured using a cytometric bead array. We performed immunohistochemical analyses to detect trypsinogen, CD206, and CD68 in human chronic pancreatitis (n = 13) and acute necrotizing pancreatitis (n = 15) specimens. RESULTS: Macrophages were the predominant immune cell population that migrated into the pancreas during induction of pancreatitis in control mice. CD68-positive macrophages were found to phagocytose acinar cell components, including zymogen-containing vesicles, in pancreata from mice with pancreatitis, as well as human necrotic pancreatic tissues. Trypsinogen became activated in macrophages cultured with purified trypsinogen or co-cultured with pancreatic acini and in pancreata of mice with pancreatitis; trypsinogen activation required macrophage endocytosis and expression and activity of CTSB, and was sensitive to pH. Activation of trypsinogen in macrophages resulted in translocation of NF-kB and production of inflammatory cytokines; mice without trypsinogen activation (CTSB-knockout mice) in macrophages developed less severe pancreatitis compared with control mice. Transfer of macrophage from control mice to CTSB-knockout mice increased the severity of pancreatitis. Inhibition of trypsin activity in macrophages prevented translocation of NF-κB and production of inflammatory cytokines. CONCLUSIONS: Studying pancreatitis in mice, we found activation of digestive proteases to occur not only in acinar cells but also in macrophages that infiltrate pancreatic tissue. Activation of the proteases in macrophage occurs during endocytosis of zymogen-containing vesicles, and depends on pH and CTSB. This process involves macrophage activation via NF-κB-translocation, and contributes to systemic inflammation and severity of pancreatitis.


Assuntos
Catepsina B/metabolismo , Endocitose , Macrófagos/enzimologia , Pâncreas/enzimologia , Pancreatite Necrosante Aguda/enzimologia , Tripsinogênio/metabolismo , Transferência Adotiva , Animais , Catepsina B/deficiência , Catepsina B/genética , Catepsina L/deficiência , Catepsina L/genética , Células Cultivadas , Ceruletídeo , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Predisposição Genética para Doença , Humanos , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Necrose , Pâncreas/imunologia , Pâncreas/patologia , Pancreatectomia , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/imunologia , Pancreatite Necrosante Aguda/patologia , Fagocitose , Fenótipo , Índice de Gravidade de Doença , Fatores de Tempo
4.
Am J Pathol ; 187(12): 2726-2743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935577

RESUMO

Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1ß, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.


Assuntos
Células Acinares , Técnicas de Cultura de Células , Pancreatite , Células Acinares/citologia , Células Acinares/metabolismo , Cadáver , Células Cultivadas , Humanos , Pâncreas/citologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Proteômica
5.
Gastroenterology ; 153(5): 1212-1226, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28918190

RESUMO

Pancreatitis is a common disorder with significant morbidity and mortality, yet little is known about its pathogenesis, and there is no specific or effective treatment. Its development involves dysregulated autophagy and unresolved inflammation, demonstrated by studies in genetic and experimental mouse models. Disease severity depends on whether the inflammatory response resolves or amplifies, leading to multi-organ failure. Dysregulated autophagy might promote the inflammatory response in the pancreas. We discuss the roles of autophagy and inflammation in pancreatitis, mechanisms of deregulation, and connections among disordered pathways. We identify gaps in our knowledge and delineate perspective directions for research. Elucidation of pathogenic mechanisms could lead to new targets for treating or reducing the severity of pancreatitis.


Assuntos
Autofagia , Citocinas/imunologia , Mediadores da Inflamação/imunologia , Pâncreas/imunologia , Pancreatite/imunologia , Animais , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/metabolismo , Pancreatite/patologia , Prognóstico , Índice de Gravidade de Doença , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
PLoS One ; 12(9): e0184455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886117

RESUMO

Epidemiologic data has linked obesity to a higher risk of pancreatic cancer, but the underlying mechanisms are poorly understood. To allow for detailed mechanistic studies in a relevant model mimicking diet-induced obesity and pancreatic cancer, a high-fat, high-calorie diet (HFCD) was given to P48+/Cre;LSL-KRASG12D (KC) mice carrying a pancreas-specific oncogenic Kras mutation. The mice were randomly allocated to a HFCD or control diet (CD). Cohorts were sacrificed at 3, 6, and 9 months and tissues were harvested for further analysis. Compared to CD-fed mice, HFCD-fed animals gained significantly more weight. Importantly, the cancer incidence was remarkably increased in HFCD-fed KC mice, particularly in male KC mice. In addition, KC mice fed the HFCD showed more extensive inflammation and fibrosis, and more advanced PanIN lesions in the pancreas, compared to age-matched CD-fed animals. Interestingly, we found that the HFCD reduced autophagic flux in PanIN lesions in KC mice. Further, exome sequencing of isolated murine PanIN lesions identified numerous genetic variants unique to the HFCD. These data underscore the role of sustained inflammation and dysregulated autophagy in diet-induced pancreatic cancer development and suggest that diet-induced genetic alterations may contribute to this process. Our findings provide a better understanding of the mechanisms underlying the obesity-cancer link in males and females, and will facilitate the development of interventions targeting obesity-associated pancreatic cancer.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Mutação , Neoplasias Pancreáticas/etiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Substituição de Aminoácidos , Animais , Autofagia/genética , Peso Corporal , Códon , Biologia Computacional/métodos , Modelos Animais de Doenças , Exoma , Matriz Extracelular/metabolismo , Feminino , Fibrose , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Neoplasias Pancreáticas/patologia
7.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G524-G536, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705806

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) displays extensive and poorly vascularized desmoplastic stromal reaction, and therefore, pancreatic cancer (PaCa) cells are confronted with nutrient deprivation and hypoxia. Here, we investigate the roles of autophagy and metabolism in PaCa cell adaptation to environmental stresses, amino acid (AA) depletion, and hypoxia. It is known that in healthy cells, basal autophagy is at a low level, but it is greatly activated by environmental stresses. By contrast, we find that in PaCa cells, basal autophagic activity is relatively high, but AA depletion and hypoxia activate autophagy only weakly or not at all, due to their failure to inhibit mechanistic target of rapamycin. Basal, but not stress-induced, autophagy is necessary for PaCa cell proliferation, and AA supply is even more critical to maintain PaCa cell growth. To gain insight into the underlying mechanisms, we analyzed the effects of autophagy inhibition and AA depletion on PaCa cell metabolism. PaCa cells display mixed oxidative/glycolytic metabolism, with oxidative phosphorylation (OXPHOS) predominant. Both autophagy inhibition and AA depletion dramatically decreased OXPHOS; furthermore, pharmacologic inhibitors of OXPHOS suppressed PaCa cell proliferation. The data indicate that the maintenance of OXPHOS is a key mechanism through which autophagy and AA supply support PaCa cell growth. We find that the expression of oncogenic activation mutation in GTPase Kras markedly promotes basal autophagy and stimulates OXPHOS through an autophagy-dependent mechanism. The results suggest that approaches aimed to suppress OXPHOS, particularly through limiting AA supply, could be beneficial in treating PDAC.NEW & NOTEWORTHY Cancer cells in the highly desmoplastic pancreatic ductal adenocarcinoma confront nutrient [i.e., amino acids (AA)] deprivation and hypoxia, but how pancreatic cancer (PaCa) cells adapt to these conditions is poorly understood. This study provides evidence that the maintenance of mitochondrial function, in particular, oxidative phosphorylation (OXPHOS), is a key mechanism that supports PaCa cell growth, both in normal conditions and under the environmental stresses. OXPHOS in PaCa cells critically depends on autophagy and AA supply. Furthermore, the oncogenic activation mutation in GTPase Kras upregulates OXPHOS through an autophagy-dependent mechanism.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Adaptação Fisiológica , Aminoácidos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Catepsinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Mutação/fisiologia , Fosforilação Oxidativa , Estresse Oxidativo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
8.
J Biol Chem ; 292(19): 7828-7839, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28242757

RESUMO

Zymogen secretory granules in pancreatic acinar cells express two vesicle-associated membrane proteins (VAMP), VAMP2 and -8, each controlling 50% of stimulated secretion. Analysis of secretion kinetics identified a first phase (0-2 min) mediated by VAMP2 and second (2-10 min) and third phases (10-30 min) mediated by VAMP8. Induction of acinar pancreatitis by supramaximal cholecystokinin (CCK-8) stimulation inhibits VAMP8-mediated mid- and late-phase but not VAMP2-mediated early-phase secretion. Elevation of cAMP during supramaximal CCK-8 mitigates third-phase secretory inhibition and acinar damage caused by the accumulation of prematurely activated trypsin. VAMP8-/- acini are resistant to secretory inhibition by supramaximal CCK-8, and despite a 4.5-fold increase in total cellular trypsinogen levels, are fully protected from intracellular trypsin accumulation and acinar damage. VAMP8-mediated secretion is dependent on expression of the early endosomal proteins Rab5, D52, and EEA1. Supramaximal CCK-8 (60 min) caused a 60% reduction in the expression of D52 followed by Rab5 and EEA1 in isolated acini and in in vivo The loss of D52 occurred as a consequence of its entry into autophagic vacuoles and was blocked by lysosomal cathepsin B and L inhibition. Accordingly, adenoviral overexpression of Rab5 or D52 enhanced secretion in response to supramaximal CCK-8 and prevented accumulation of activated trypsin. These data support that acute inhibition of VAMP8-mediated secretion during pancreatitis triggers intracellular trypsin accumulation and loss of the early endosomal compartment. Maintaining anterograde endosomal trafficking during pancreatitis maintains VAMP8-dependent secretion, thereby preventing accumulation of activated trypsin.


Assuntos
Pancreatite/metabolismo , Proteínas R-SNARE/metabolismo , Tripsina/química , Animais , Endossomos/metabolismo , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Tripsinogênio/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
9.
Sci Rep ; 6: 37200, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845447

RESUMO

The loss-of-function mutations of serine protease inhibitor, Kazal type 1 (SPINK1) gene are associated with human chronic pancreatitis, but the underlying mechanisms remain unknown. We previously reported that mice lacking Spink3, the murine homologue of human SPINK1, die perinatally due to massive pancreatic acinar cell death, precluding investigation of the effects of SPINK1 deficiency. To circumvent perinatal lethality, we have developed a novel method to integrate human SPINK1 gene on the X chromosome using Cre-loxP technology and thus generated transgenic mice termed "X-SPINK1". Consistent with the fact that one of the two X chromosomes is randomly inactivated, X-SPINK1 mice exhibit mosaic pattern of SPINK1 expression. Crossing of X-SPINK1 mice with Spink3+/- mice rescued perinatal lethality, but the resulting Spink3-/-;XXSPINK1 mice developed spontaneous pancreatitis characterized by chronic inflammation and fibrosis. The results show that mice lacking a gene essential for cell survival can be rescued by expressing this gene on the X chromosome. The Spink3-/-;XXSPINK1 mice, in which this method has been applied to partially restore SPINK1 function, present a novel genetic model of chronic pancreatitis.


Assuntos
Glicoproteínas/deficiência , Pancreatite , Inibidor da Tripsina Pancreática de Kazal/deficiência , Cromossomo X , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Integrases , Masculino , Camundongos , Camundongos Knockout , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Secretadas pela Próstata , Inibidor da Tripsina Pancreática de Kazal/genética , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
11.
Cancer Prev Res (Phila) ; 6(10): 1064-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23943783

RESUMO

There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, for example, weight gain and metabolic disturbances. Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a high-fat, high-calorie diet (HFCD; ∼4,535 kcal/kg; 40% of calories from fats) or control diet (∼3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared with control animals, mice fed with the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor I (IGF-I). The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions. Our results show that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemopreventive strategies targeting obesity-associated pancreatic cancer development.


Assuntos
Carcinoma Ductal Pancreático/genética , Dieta Hiperlipídica/efeitos adversos , Genes ras , Neoplasias Pancreáticas/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Actinas/metabolismo , Animais , Peso Corporal , Carcinoma Ductal Pancreático/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ingestão de Energia , Feminino , Fibronectinas/metabolismo , Genótipo , Imuno-Histoquímica , Inflamação , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Neoplasias Pancreáticas/metabolismo
12.
Gastroenterology ; 144(2): 437-446.e6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23103769

RESUMO

BACKGROUND & AIMS: Opening of the mitochondrial permeability transition pore (MPTP) causes loss of the mitochondrial membrane potential (ΔΨm) and, ultimately, adenosine triphosphate depletion and necrosis. Cells deficient in cyclophilin D (CypD), a component of the MPTP, are resistant to MPTP opening, loss of ΔΨm, and necrosis. Alcohol abuse is a major risk factor for pancreatitis and is believed to sensitize the pancreas to stressors, by poorly understood mechanisms. We investigated the effects of ethanol on the pancreatic MPTP, the mechanisms of these effects, and their role in pancreatitis. METHODS: We measured ΔΨm in mouse pancreatic acinar cells incubated with ethanol alone and in combination with physiologic and pathologic concentrations of cholecystokinin-8 (CCK). To examine the role of MPTP, we used ex vivo and in vivo models of pancreatitis, induced in wild-type and CypD(-/-) mice by a combination of ethanol and CCK. RESULTS: Ethanol reduced basal ΔΨm and converted a transient depolarization, induced by physiologic concentrations of CCK, into a sustained decrease in ΔΨm, resulting in reduced cellular adenosine triphosphate and increased necrosis. The effects of ethanol and CCK were mediated by MPTP because they were not observed in CypD(-/-) acinar cells. Ethanol and CCK activated MPTP through different mechanisms-ethanol by reducing the ratio of oxidized nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide, as a result of oxidative metabolism, and CCK by increasing cytosolic Ca(2+). CypD(-/-) mice developed a less-severe form of pancreatitis after administration of ethanol and CCK. CONCLUSIONS: Oxidative metabolism of ethanol sensitizes pancreatic mitochondria to activate MPTP, leading to mitochondrial failure; this makes the pancreas susceptible to necrotizing pancreatitis.


Assuntos
Etanol/farmacocinética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Alcoólica/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Modelos Animais de Doenças , Etanol/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/etiologia , Pancreatite Necrosante Aguda/patologia , Pancreatite Alcoólica/complicações , Pancreatite Alcoólica/patologia
13.
Pancreas ; 42(4): 655-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23271397

RESUMO

OBJECTIVES: Cigarette smoking is a major risk factor for pancreatic cancer (PaCa). However, the mechanisms of smoking-induced PaCa remain unknown. Here we investigated the effect of smoking compounds on cell death pathways in pancreatic ductal cells, precursors of PaCa. METHODS: Human pancreatic ductal cells (HPDE6-c7) were cultured with cigarette smoke extract (CSE) or smoking compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Apoptosis and autophagy were assessed by DNA fragmentation and immunofluorescence, respectively. RESULTS: Exposure to CSE or NNK decreased DNA fragmentation and up-regulated BclXL. Akt kinase was activated by smoking compounds through reactive oxygen species-dependent mechanism. Specifically, Akt activation was prevented by inhibition of nicotinamide adenine dinucleotide oxidase. Molecular or pharmacologic inhibitions of Akt prevented the antiapoptotic effect of smoking compounds. Smoking compounds stimulated rapid (1 hour) and transient activation of 5'-adenosine monophosphate-activated protein kinase and formation of autophagic vacuoles, indicating stimulation of autophagy. Repeated exposure to CSE/NNK (48 hours or longer) abolished the early activation of autophagic markers. Inhibition of Akt prevented the antiautophagic effect of long exposure to smoking compounds, indicating that smoking-induced late activation of Akt prevents autophagy. CONCLUSIONS: Long exposure of pancreatic ductal cells to smoking compounds inhibited apoptosis and autophagy. The results revealed a central role for Akt kinase in mediating key procarcinogenic effects of smoking compounds.


Assuntos
Ductos Pancreáticos/enzimologia , Ductos Pancreáticos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fumar/metabolismo , Fumar/patologia , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Carcinógenos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Fragmentação do DNA/efeitos dos fármacos , Humanos , Camundongos , Nitrosaminas/toxicidade , Ductos Pancreáticos/efeitos dos fármacos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Fumaça/efeitos adversos , Fumar/efeitos adversos , Nicotiana/toxicidade , Proteína bcl-X/metabolismo
14.
Pancreatology ; 12(4): 344-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22898636

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease. The prognosis is poor; less than 5% of those diagnosed are still alive five years after diagnosis, and complete remission is still rare. Tobacco smoking is a major risk factor of pancreatic cancer. However, the mechanism(s) through which it causes the disease remains unknown. Accumulating evidence indicates that carcinogenic compounds in cigarette smoke stimulate pancreatic cancer progression through induction of inflammation and fibrosis which act in concert with genetic factors leading to the inhibition of cell death and stimulation of proliferation resulting in the promotion of the PDAC.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Neoplasias Pancreáticas/etiologia , Fumar/efeitos adversos , Animais , Carcinógenos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Inflamação , Masculino , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fatores de Risco , Fumaça/análise , Nicotiana
15.
Gastroenterology ; 142(2): 377-87.e1-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22044669

RESUMO

BACKGROUND & AIMS: The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC). METHODS: We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis. RESULTS: PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size. CONCLUSIONS: PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.


Assuntos
Apoptose , Carcinoma Ductal Pancreático/enzimologia , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinoma Ductal Pancreático/mortalidade , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Neoplasias Pancreáticas/mortalidade , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo
16.
Biochim Biophys Acta ; 1813(8): 1465-74, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21596068

RESUMO

Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Fitoterapia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Scutellaria baicalensis/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/genética , Apoptose/fisiologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Flavanonas/isolamento & purificação , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Técnicas de Silenciamento de Genes , Genes bcl-2/efeitos dos fármacos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenóis/isolamento & purificação , Fenóis/farmacologia , Polifenóis , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Virais/metabolismo
17.
Alcohol Clin Exp Res ; 35(5): 830-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284675

RESUMO

Alcohol abuse is one of the most common causes of pancreatitis. The risk of developing alcohol-induced pancreatitis is related to the amount and duration of drinking. However, only a small portion of heavy drinkers develop disease, indicating that other factors (genetic, environmental, or dietary) contribute to disease initiation. Epidemiologic studies suggest roles for cigarette smoking and dietary factors in the development of alcoholic pancreatitis. The mechanisms underlying alcoholic pancreatitis are starting to be understood. Studies from animal models reveal that alcohol sensitizes the pancreas to key pathobiologic processes that are involved in pancreatitis. Current studies are focussed on the mechanisms responsible for the sensitizing effect of alcohol; recent findings reveal disordering of key cellular organelles including endoplasmic reticulum, mitochondria, and lysosomes. As our understanding of alcohol's effects continue to advance to the level of molecular mechanisms, insights into potential therapeutic strategies will emerge providing opportunities for clinical benefit.


Assuntos
Alcoolismo/patologia , Pancreatite Alcoólica/patologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/patologia , Alcoolismo/complicações , Alcoolismo/metabolismo , Animais , Morte Celular/fisiologia , Humanos , Pancreatite Alcoólica/etiologia , Pancreatite Alcoólica/metabolismo , Transporte Proteico/fisiologia
18.
J Biol Chem ; 286(10): 7779-7787, 2011 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-21118808

RESUMO

We recently showed that Nox4 NADPH oxidase is highly expressed in pancreatic ductal adenocarcinoma and that it is activated by growth factors and plays a pro-survival, anti-apoptotic role. Here we investigate the mechanisms through which insulin-like growth factor I and serum (FBS) activate NADPH oxidase in pancreatic cancer (PaCa) cells. We show that in PaCa cells, NADPH oxidase is composed of Nox4 and p22(phox) catalytic subunits, which are both required for NADPH oxidase activity. Insulin-like growth factor I and FBS activate NADPH oxidase through transcriptional up-regulation of p22(phox). This involves activation of the transcription factor NF-κB mediated by Akt kinase. Up-regulation of p22(phox) by the growth factors results in increased Nox4-p22(phox) complex formation and activation of NADPH oxidase. This mechanism is different from that for receptor-induced activation of phagocytic NADPH oxidase, which is mediated by phosphorylation of its regulatory subunits. Up-regulation of p22(phox) represents a novel pro-survival mechanism through which growth factors and Akt inhibit apoptosis in PaCa cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , NADPH Oxidases/biossíntese , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , NADPH Oxidase 4 , NADPH Oxidases/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-akt/genética
19.
Pflugers Arch ; 460(5): 891-900, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20617337

RESUMO

Physiological stimulation of pancreatic acinar cells by cholecystokinin and acetylcholine activate a spatial-temporal pattern of cytosolic [Ca(+2)] changes that are regulated by a coordinated response of inositol 1,4,5-trisphosphate receptors (IP(3)Rs), ryanodine receptors (RyRs) and calcium-induced calcium release (CICR). For the present study, we designed experiments to determine the potential role of Bcl-2 proteins in these patterns of cytosolic [Ca(+2)] responses. We used small molecule inhibitors that disrupt the interactions between prosurvival Bcl-2 proteins (i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e. Bax) and fluorescence microfluorimetry techniques to measure both cytosolic [Ca(+2)] and endoplasmic reticulum [Ca(+2)]. We found that the inhibitors of Bcl-2 protein interactions caused a slow and complete release of intracellular agonist-sensitive stores of calcium. The release was attenuated by inhibitors of IP(3)Rs and RyRs and substantially reduced by strong [Ca(2+)] buffering. Inhibition of IP(3)Rs and RyRs also dramatically reduced activation of apoptosis by BH3I-2'. CICR induced by different doses of BH3I-2' in Bcl-2 overexpressing cells was markedly decreased compared with control. The results suggest that Bcl-2 proteins regulate calcium release from the intracellular stores and suggest that the spatial-temporal patterns of agonist-stimulated cytosolic [Ca(+2)] changes are regulated by differential cellular distribution of interacting pairs of prosurvival and proapoptotic Bcl-2 proteins.


Assuntos
Cálcio/metabolismo , Pâncreas Exócrino/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Benzopiranos/farmacologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Masculino , Camundongos , Nitrilas/farmacologia , Pâncreas Exócrino/citologia , Pâncreas Exócrino/efeitos dos fármacos , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores
20.
Am J Physiol Gastrointest Liver Physiol ; 298(1): G63-73, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19762431

RESUMO

Rottlerin is a polyphenolic compound derived from Mallotus philipinensis. In the present study, we show that rottlerin decreased tumor size and stimulated apoptosis in an orthotopic model of pancreatic cancer with no effect on normal tissues in vivo. Rottlerin also induced apoptosis in pancreatic cancer (PaCa) cell lines by interacting with mitochondria and stimulating cytochrome c release. Immunoprecipitation results indicated that rottlerin disrupts complexes of prosurvival Bcl-xL with Bim and Puma. Furthermore, siRNA knockdown showed that Bim and Puma are necessary for rottlerin to stimulate apoptosis. We also showed that rottlerin and Bcl-2 and Bcl-xL inhibitor BH3I-2' stimulate apoptosis through a common mechanism. They both directly interact with mitochondria, causing increased cytochrome c release and mitochondrial depolarization, and both decrease sequestration of BH3-only proteins by Bcl-xL. However, the effects of rottlerin and BH3I-2' on the complex formation between Bcl-xL and BH3-only proteins are different. BH3I-2' disrupts complexes of Bcl-xL with Bad but not with Bim or Puma, whereas rottlerin had no effect on the Bcl-xL interaction with Bad. Also BH3I-2', but not rottlerin, required Bad to stimulate apoptosis. In conclusion, our results demonstrate that rottlerin has a potent proapoptotic and antitumor activity in pancreatic cancer, which is mediated by disrupting the interaction between prosurvival Bcl-2 proteins and proapoptotic BH3-only proteins. Thus rottlerin represents a promising novel agent for pancreatic cancer treatment.


Assuntos
Acetofenonas/farmacologia , Adenocarcinoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Benzamidas/farmacologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA