Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(50): 48233-48250, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144138

RESUMO

Retinoblastoma (Rb) is the most common pediatric eye cancer. To identify the biomarkers for early diagnosis and monitoring the progression of Rb in patients, mapping of the alterations in their metabolic profiles is essential. The present study aims at exploring the metabolic disparity in serum from Rb patients and controls using NMR-based metabolomics. A total of 72 metabolites, including carbohydrates, amino acids, and organic acids, were quantified in serum samples from 24 Rb patients and 26 controls. Distinct clusters of Rb patients and controls were obtained using the partial least-squares discriminant analysis (PLS-DA) model. Further, univariate and multivariate analyses of unilateral and bilateral Rb patients with respect to their age-matched controls depicted their distinct metabolic fingerprints. Metabolites including 2-phosphoglycerate, 4-aminobutyrate, proline, O-phosphocholine, O-phosphoethanolamine, and Sn-glycero-3-phosphocholine (Sn-GPC) showed significant perturbation in both unilateral and bilateral Rb patients. However, metabolic differences among the bilateral Rb cases were more pronounced than those in unilateral Rb cases with respect to controls. In addition to major discriminatory metabolites for Rb, unilateral and bilateral Rb cases showed specific metabolic changes, which might be the result of their differential genetic/somatic mutational backgrounds. This further suggests that the aberrant metabolic perturbation in bilateral patients signifies the severity of the disease in Rb patients. The present study demonstrated that identified serum metabolites have potential to serve as a noninvasive method for detection of Rb, discriminate bilateral from unilateral Rb patients, and aid in better understanding of the RB tumor biology.

2.
Invest Ophthalmol Vis Sci ; 64(11): 26, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603355

RESUMO

Purpose: To identify the genes and pathways responsible for treatment resistance (TR) in retinoblastoma (RB) by analyzing serum small extracellular vesicles (sEVs) of patients with TR active RB (TR-RB) and completely regressed RB (CR-RB). Methods: Serum-derived sEVs were characterized by transmission electron microscopy and nanoparticle tracking analysis. sEV transcriptome profiles of two TR-RB and one CR-RB with good response (>20 years tumor free) were compared to their age-matched controls (n = 3). Gene expression data were analyzed by the R Bioconductor package. The CD9 protein and mRNA expression of CD9, CD63, and CD81 were studied in five RB tumors and two control retinae by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. Results: The isolated serum sEVs were round shaped and within the expected size (30-150 nm), and they had zeta potentials ranging from -10.8 to 15.9 mV. The mean ± SD concentrations of sEVs for two adults and four children were 1.1 × 1012 ± 0.1 and 5.8 × 1011 ± 1.7 particles/mL. Based on log2 fold change of ±2 and P < 0.05 criteria, there were 492 dysregulated genes in TR-RB and 184 in CR-RB. KAT2B, VWA1, CX3CL1, MLYCD, NR2F2, USP46-AS1, miR6724-4, and LINC01257 genes were specifically dysregulated in TR-RB. Negative regulation of apoptotic signaling, cell growth, and proton transport genes were greater than fivefold expressed only in TR-RB. CD9, CD63, and CD81 mRNA levels were high in RB tumors versus control retina, with increased and variable CD9 immunoreactivity in the invasive areas of the tumor. Conclusions: Serum sEVs could serve as a potential liquid biopsy source for understanding TR mechanisms in RB.


Assuntos
Vesículas Extracelulares , Neoplasias da Retina , Retinoblastoma , Adulto , Criança , Humanos , Retinoblastoma/genética , Retina , Transdução de Sinais , Neoplasias da Retina/genética
3.
Biochemistry ; 60(43): 3236-3252, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665609

RESUMO

The summarized amalgam of internal relaxation modulations and external forces like pH, temperature, and solvent conditions determine the protein structure, stability, and function. In a free-energy landscape, although conformers are arranged in vertical hierarchy, there exist several adjacent parallel sets with conformers occupying equivalent energy cleft. Such conformational states are pre-requisites for the functioning of proteins that have oscillating environmental conditions. As these conformational changes have utterly small re-arrangements, nuclear magnetic resonance (NMR) spectroscopy is unique in elucidating the structure-dynamics-stability-function relationships for such conformations. Helicobacter pylori survives and causes gastric cancer at extremely low pH also. However, least is known as to how the genome of the pathogen is protected from reactive oxygen species (ROS) scavenging in the gut at low pH under acidic stress. In the current study, biophysical characteristics of H. pylori DNA binding protein (Hup) have been elucidated at pH 2 using a combination of circular dichroism, fluorescence, NMR spectroscopy, and molecular dynamics simulations. Interestingly, the protein was found to have conserved structural features, differential backbone dynamics, enhanced stability, and DNA binding ability at low pH as well. In summary, the study suggests the partaking of Hup protein even at low pH in DNA protection for maintaining the genome integrity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Transporte/metabolismo , Dicroísmo Circular/métodos , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Entropia , Fluorescência , Helicobacter pylori/patogenicidade , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Simulação de Dinâmica Molecular , Espécies Reativas de Oxigênio/metabolismo , Solventes/química , Temperatura
4.
Int J Biol Macromol ; 151: 467-482, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084483

RESUMO

Protein nanocomposites have attracted considerable research interest in recent times owing to the combined advantageous properties of nanotechnology and proteins. Lysozyme holds enormous potential in various biomedical applications as it possesses antibacterial properties, anti-inflammatory, anti-cancer, and analgesic properties. Considering its multifunctional aspects, structural stability and ease of production and modification, special focus has been attributed to this protein. Nanocomposites have either been fabricated completely from lysozyme or have been conjugated to lysozyme considering its versatile biotechnological applications. The current review describes the recent advances of protein nanocomposites using lysozyme as a prime example. Along with the principles, techniques, and applications involved in protein based nanocomposites, this review also provides a comprehensive account of interactions between lysozyme and different nanoparticles. Numerous studies that have integrated the utilization of lysozyme and nanotechnology for a variety of applications have also been discussed at length.


Assuntos
Nanocompostos/química , Proteínas/química , Animais , Biocatálise , Técnicas Biossensoriais , Técnicas de Química Sintética , Sistemas de Liberação de Medicamentos , Humanos , Lisossomos/química , Nanotecnologia , Relação Estrutura-Atividade , Nanomedicina Teranóstica
5.
Arch Biochem Biophys ; 662: 121-128, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528777

RESUMO

Multigene families such as chemokines arose as a result of gene duplication events, followed by mutations and selection. GRO chemokines are three duplicated CXCL genes, comprising of CXCL1, CXCL2 and CXCL3 proteins. Comparative structural analysis of the two closely related paralog chemokines CXCL2 and CXCL3 in the current study indicated a variable electrostatic surface between them, and a specific hydrophobic pocket on the surface of CXCL3 that can bind naphthalene derivatives. Combined fluorescence and NMR analyses revealed that CXCL3 monomer can specifically bind to ANS (8-Anilinonaphthalene-1-sulfonic acid) with a stoichiometry of 1:1 by involving the residues belonging to the structural elements 310 helix and the α-helix. A close observation of the surfaces of these paralogs suggested that such a hydrophobic pocket is a resultant of inter-switch between a charged and a hydrophobic residue on the primary sequence of the two paralog proteins. Interestingly, the hydrophobic pocket is in the vicinity of GAG binding region of CXCL3, a molecular determinant in leukocyte trafficking. Such unique pockets/patches on specific chemokine surfaces can be exploited to design the naphthalene/small molecule based inhibitors against GAG binding to regulate their molecular interactions during the onset and progression of various types of cancers and inflammatory diseases.


Assuntos
Aminoácidos/metabolismo , Quimiocinas CXC/metabolismo , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas
6.
Int J Biol Macromol ; 107(Pt A): 575-584, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28928065

RESUMO

CXCL3 is a neutrophil activating chemokine that belongs to GRO subfamily of CXC chemokines. GRO chemokine family comprises of three chemokines GRO α (CXCL1), GROß (CXCL2), and GRO γ (CXCL3), which arose as a result of gene duplication events during the course of chemokine evolution. Although primary sequences of GRO chemokines are highly similar, they performs several protein specific functions in addition to their common property of neutrophil trafficking. However, the molecular basis for their differential functions has not well understood. Although structural details are available for CXCL1 and CXCL2, no such information regarding CXCL3 is available till date. In the present study, we have successfully cloned, expressed, and purified the recombinant CXCL3. Around 15mg/L of pure recombinant CXCL3 protein was obtained. Further, we investigated its functional divergence and biophysical characteristics such as oligomerization, thermal stability and heparin binding etc., and compared all these features with its closest paralog CXCL2. Our studies revealed that, although overall structural and oligomerization features of CXCL3 and CXCL2 are similar, prominent differences were observed in their surface characteristics, thus implicating for a functional divergence.


Assuntos
Quimiocina CXCL1/química , Quimiocina CXCL2/química , Quimiocinas CXC/química , Clonagem Molecular/métodos , Heparina/química , Sequência de Aminoácidos , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heparina/metabolismo , Humanos , Camundongos , Modelos Moleculares , Primatas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Roedores , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
R Soc Open Sci ; 4(9): 171059, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989790

RESUMO

Chemokines are chemotactic cytokines involved in leucocyte trafficking to infected tissue. Growth-related oncogene (GRO) chemokines namely CXCL1, CXCL2 and CXCL3 are neutrophil activating chemokines sharing a conserved three-dimensional structure, but encompassing functional diversity due to gene duplication and evolutionary events. However, the evolutionary mechanisms including selection pressures involved in diversification of GRO genes have not yet been characterized. Here, we performed comprehensive evolutionary analysis of GRO genes among different mammalian species. Phylogenetic analysis illustrated a species-specific evolution pattern. Selection analysis evidenced that these genes have undergone concerted evolution. Seventeen positively selected sites were obtained, although the majority of the protein is under purifying selection. Interestingly, these positively selected sites are more concentrated on the C-terminal/glycosaminoglycan (GAG) binding and dimerization segment compared to receptor binding domain. Substitution rate analysis confirmed the C-terminal domain of GRO genes as the highest substituted segment. Further, structural analysis established that the nucleotide alterations in the GAG binding domain are the source of surface charge modulation, thus generating the differential GAG binding surfaces and multiple binding sites as per evolutionary pressure, although the helical surface is primordial for GAG binding. Indeed, such variable electrostatic surfaces are crucial to regulate chemokine gradient formation during a host's defence against pathogens and also explain the significance of chemokine promiscuity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA