Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1252727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810891

RESUMO

Introduction: Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results: Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion: Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.


Assuntos
Doenças Autoimunes , Doença de Graves , Oftalmopatia de Graves , Camundongos , Animais , Oftalmopatia de Graves/metabolismo , Arginase , Medula Óssea/metabolismo , Receptores da Tireotropina , Doenças Autoimunes/complicações , Arginina
2.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33163980

RESUMO

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Assuntos
Células Epiteliais/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Amitriptilina/farmacologia , Animais , Antidepressivos/farmacologia , Ceramidas/antagonistas & inibidores , Ceramidas/metabolismo , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Ceramidase Neutra/farmacologia , SARS-CoV-2/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírus da Estomatite Vesicular Indiana/genética
3.
Cell Physiol Biochem ; 39(2): 790-801, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27475812

RESUMO

BACKGROUND/AIMS: Major depressive disorder is one of the most common diseases in western countries. The disease is mainly defined by its psychiatric symptoms. However, the disease has also many symptoms outside the central nervous system, in particular cardiovascular symptoms. Recent studies demonstrated that the acid sphingomyelinase/ceramide system plays an important role in the development of major depressive disorder and functions as a target of antidepressants. METHODS: Here, we investigated (i) whether ceramide accumulates in endothelial cells in the neurogenetic zone of the hippocampus after glucocorticosterone-mediated stress, (ii) whether ceramide is released into the extracellular space of the hippocampus and (iii) whether extracellular ceramide inhibits neuronal proliferation. Ceramide was determined in endothelial cell culture supernatants or extracellular hippocampus extracts by a kinase assay. Endothelial ceramide in the hippocampus was analyzed by confocal microscopy of brain sections stained with Cy3-labelled anti-ceramide antibodies and FITC-Isolectin B4. Neuronal proliferation was measured by incubation of pheochromocytoma neuronal cells with culture supernatants and extracellular hippocampus extracts. RESULTS: Treatment of cultured endothelial cells with glucocorticosterone induces a release of ceramide into the supernatant. Likewise, treatment of mice with glucocorticosterone triggers a release of ceramide into the extracellular space of the hippocampus. The release of ceramide is inhibited by concomitant treatment with the antidepressant amitriptyline, which also inhibits the activity of the acid sphingomyelinase. Studies employing confocal microscopy revealed that ceramide is formed and accumulates exclusively in endothelial cells in the hippocampus of stressed mice, a process that was again prevented by co-application of amitriptyline. Ceramide released in the culture supernatant or into the extracellular space of the hippocampus reduced proliferation of neurons in vitro. CONCLUSION: The data suggest a novel model for the pathogenesis of major depressive disorder, i.e. the release of ceramide-enriched microvesicles from endothelial cells that negatively affect neuronal proliferation in the hippocampus, but may also induce cardiovascular disease and other systemic symptoms of patients with major depressive disorder.


Assuntos
Proliferação de Células/fisiologia , Ceramidas/metabolismo , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , 11-Hidroxicorticosteroides/farmacologia , Amitriptilina/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células-Tronco Neurais/efeitos dos fármacos , Células PC12 , Ratos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA