Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213805, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457904

RESUMO

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.


Assuntos
Gelatina , Microgéis , Gelatina/farmacologia , Gelatina/química , Materiais Biocompatíveis , Metacrilatos/química
2.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873385

RESUMO

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98% viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, indicating that mineralization effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.

3.
ACS Biomater Sci Eng ; 9(11): 6282-6292, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906515

RESUMO

In order to scale up culture therapeutic cells, such as mesenchymal stromal cells (MSCs), culture in suspension bioreactors using microcarriers (µCs) is preferred. However, the impact of microcarrier type on the resulting MSC secretory activity has not been investigated. In this study, two poly(ethylene glycol) hydrogel formulations with different swelling ratios (named "stiffer" and "softer") were fabricated as µC substrates to culture MSCs and MSCs genetically modified to express the interleukin-1 receptor antagonist (IL-1Ra-MSCs). Changes in cell number, secretory and angiogenic activity, and changes in MAPK signaling were evaluated when cultured on hydrogel µCs, as well as on tissue culture plastic-based Synthemax µCs. We demonstrated that culture on stiffer µCs increased secretion of IL-1Ra compared to culture on Synthemax µCs by IL-1Ra-MSCs by 1.2- to 1.6-fold, as well as their in vitro angiogenic activity, compared to culture on Synthemax µCs, while culture on both stiffer and softer µCs altered the secretion of several other factors compared to culture on Synthemax µCs. Changes in angiogenic activity corresponded with increased gene expression and secretion of hepatocyte growth factor by MSCs cultured on softer µCs by 2.5- to 6-fold compared to MSCs cultured on Synthemax µCs. Quantification of phosphoprotein signaling with the MAPK pathway revealed broad reduction of pathway activation by IL-1Ra-MSCs cultured on both stiffer and softer µCs compared to Synthemax, where phosphorylated c-Jun, ATF2, and MEK1 were reduced specifically on softer µCs. Overall, this study showed that µC surfaces can influence the secretory activity of genetically modified MSCs and identified associated changes in MAPK pathway signaling, which is a known central regulator of cytokine secretion.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Células-Tronco Mesenquimais , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Técnicas de Cultura de Células/métodos , Materiais Biocompatíveis , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polietilenoglicóis/farmacologia , Polietilenoglicóis/metabolismo
4.
Front Bioeng Biotechnol ; 11: 1224141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744252

RESUMO

Background: Micronized dehydrated human amnion/chorion membrane (mdHACM) has reduced short term post-traumatic osteoarthritis (PTOA) progression in rats when delivered 24 h after medial meniscal transection (MMT) and is being investigated for clinical use as a disease modifying therapy. Much remains to be assessed, including its potential for longer-term therapeutic benefit and treatment effects after onset of joint degeneration. Objectives: Characterize longer-term effects of acute treatment with mdHACM and determine whether treatment administered to joints with established PTOA could slow or reverse degeneration. Hypotheses: Acute treatment effects will be sustained for 6 weeks, and delivery of mdHACM after onset of joint degeneration will attenuate structural osteoarthritic changes. Methods: Rats underwent MMT or sham surgery (left leg). mdHACM was delivered intra-articularly 24 h or 3 weeks post-surgery (n = 5-7 per group). Six weeks post-surgery, animals were euthanized and left tibiae scanned using equilibrium partitioning of an ionic contrast agent microcomputed tomography (EPIC-µCT) to structurally quantify joint degeneration. Histology was performed to examine tibial plateau cartilage. Results: Quantitative 3D µCT showed that cartilage structural metrics (thickness, X-ray attenuation, surface roughness, exposed bone area) for delayed mdHACM treatment limbs were significantly improved over saline treatment and not significantly different from shams. Subchondral bone mineral density and thickness for the delayed treatment group were significantly improved over acute treated, and subchondral bone thickness was not significantly different from sham. Marginal osteophyte degenerative changes were decreased with delayed mdHACM treatment compared to saline. Acute treatment (24 h post-surgery) did not reduce longer-term joint tissue degeneration compared to saline. Histology supported µCT findings and further revealed that while delayed treatment reduced cartilage damage, chondrocytes displayed qualitatively different morphologies and density compared to sham. Conclusion: This study provides insight into effects of intra-articular delivery timing relative to PTOA progression and the duration of therapeutic benefit of mdHACM. Results suggest that mdHACM injection into already osteoarthritic joints can improve joint health, but a single, acute mdHACM injection post-injury does not prevent long term osteoarthritis associated with meniscal instability. Further work is needed to fully characterize the durability of therapeutic benefit in stable osteoarthritic joints and the effects of repeated injections.

5.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850431

RESUMO

Magnetoelastic sensors, which undergo mechanical resonance when interrogated with magnetic fields, can be functionalized to measure various physical quantities and chemical/biological analytes by tracking their resonance behaviors. The unique wireless and functionalizable nature of these sensors makes them good candidates for biological sensing applications, from the detection of specific bacteria to tracking force loading inside the human body. In this study, we evaluate the viability of magnetoelastic sensors based on a commercially available magnetoelastic material (Metglas 2826 MB) for wirelessly monitoring the attachment and growth of human mesenchymal stromal cells (hMSCs) in 2D in vitro cell culture. The results indicate that the changes in sensor resonance are linearly correlated with cell quantity. Experiments using a custom-built monitoring system also demonstrated the ability of this technology to collect temporal profiles of cell growth, which could elucidate key stages of cell proliferation based on acute features in the profile. Additionally, there was no observed change in the morphology of cells after they were subjected to magnetic and mechanical stimuli from the monitoring system, indicating that this method for tracking cell growth may have minimal impact on cell quality and potency.


Assuntos
Células-Tronco Mesenquimais , Humanos , Proliferação de Células , Técnicas de Cultura de Células , Cultura , Campos Magnéticos
6.
Adv Healthc Mater ; 12(11): e2200976, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808718

RESUMO

Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.


Assuntos
Microgéis , Humanos , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Osso e Ossos , Materiais Biocompatíveis/química , Diferenciação Celular/fisiologia , Engenharia Tecidual , Alicerces Teciduais/química
7.
Front Surg ; 9: 934773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874126

RESUMO

Bone non-unions resulting from severe traumatic injuries pose significant clinical challenges, and the biological factors that drive progression towards and healing from these injuries are still not well understood. Recently, a dysregulated systemic immune response following musculoskeletal trauma has been identified as a contributing factor for poor outcomes and complications such as infections. In particular, myeloid-derived suppressor cells (MDSCs), immunosuppressive myeloid-lineage cells that expand in response to traumatic injury, have been highlighted as a potential therapeutic target to restore systemic immune homeostasis and ultimately improve functional bone regeneration. Previously, we have developed a novel immunomodulatory therapeutic strategy to deplete MDSCs using Janus gold nanoparticles that mimic the structure and function of antibodies. Here, in a preclinical delayed treatment composite injury model of bone and muscle trauma, we investigate the effects of these nanoparticles on circulating MDSCs, systemic immune profiles, and functional bone regeneration. Unexpectedly, treatment with the nanoparticles resulted in depletion of the high side scatter subset of MDSCs and an increase in the low side scatter subset of MDSCs, resulting in an overall increase in total MDSCs. This overall increase correlated with a decrease in bone volume (P = 0.057) at 6 weeks post-treatment and a significant decrease in mechanical strength at 12 weeks post-treatment compared to untreated rats. Furthermore, MDSCs correlated negatively with endpoint bone healing at multiple timepoints. Single cell RNA sequencing of circulating immune cells revealed differing gene expression of the SNAb target molecule S100A8/A9 in MDSC sub-populations, highlighting a potential need for more targeted approaches to MDSC immunomodulatory treatment following trauma. These results provide further insights on the role of systemic immune dysregulation for severe trauma outcomes in the case of non-unions and composite injuries and suggest the need for additional studies on targeted immunomodulatory interventions to enhance healing.

9.
Acta Biomater ; 127: 180-192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823326

RESUMO

Successful bone healing in severe trauma depends on early revascularization to restore oxygen, nutrient, growth factor, and progenitor cell supply to the injury. Therapeutic angiogenesis strategies have therefore been investigated to promote revascularization following severe bone injuries; however, results have been inconsistent. This is the first study investigating the effects of dual angiogenic growth factors (VEGF and PDGF) with low-dose bone morphogenetic protein-2 (BMP-2; 2.5 µg) on bone healing in a clinically challenging composite bone-muscle injury model. Our hydrogel-based delivery systems demonstrated a more than 90% protein entrapment efficiency and a controlled simultaneous release of three growth factors over 28 days. Co-stimulation of microvascular fragment constructs with VEGF and PDGF promoted vascular network formation in vitro compared to VEGF or PDGF alone. In an in vivo model of segmental bone and volumetric muscle loss injury, combined VEGF (5 µg) and PDGF (7.5 µg or 15 µg) delivery with a low dose of BMP-2 significantly enhanced regeneration of vascularized bone compared to BMP-2 treatment alone. Notably, the regenerated bone mechanics reached ~60% of intact bone, a value that was previously only achieved by delivery of high-dose BMP-2 (10 µg) in this injury model. Overall, sustained delivery of VEGF, PDFG, and BMP-2 is a promising strategy to promote functional vascularized bone tissue regeneration following severe composite musculoskeletal injury. Although this study is conducted in a clinically relevant composite injury model in rats using a simultaneous release strategy, future studies are necessary to test the regenerative potential of spatiotemporally controlled delivery of triple growth factors on bone healing using large animal models. STATEMENT OF SIGNIFICANCE: Volumetric muscle loss combined with delayed union or non-union bone defect causes deleterious effects on bone regeneration even with the supplementation of bone morphogenetic protein-2 (BMP-2). In this study, the controlled delivery of dual angiogenic growth factors (vascular endothelial growth factor [VEGF] + Platelet-derived growth factor [PDGF]) increases vascular growth in vitro. Co-delivering VEGF+PDGF significantly increase the bone formation efficacy of low-dose BMP-2 and improves the mechanics of regenerated bone in a challenging composite bone-muscle injury model.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Sistema Musculoesquelético/lesões , Animais , Osso e Ossos , Hidrogéis/farmacologia , Osteogênese , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Biotechnol Bioeng ; 117(6): 1761-1778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100872

RESUMO

Mesenchymal stromal cells (MSCs) have failed to consistently demonstrate their therapeutic efficacy in clinical trials, due in part to variability in culture conditions used for their production. Of various culture conditions used for MSC production, aggregate culture has been shown to improve secretory capacity (a putative mechanism of action in vivo) compared with standard monolayer culture. The purpose of this study was to perform multiomics characterization of MSCs cultured in monolayer and as aggregates to identify aspects of cell physiology that differ between these culture conditions to begin to understand cellular-level changes that might be related to secretory capacity. Targeted secretome characterization was performed on multiple batches of MSC-conditioned media, while nontargeted proteome and metabolome characterization was performed and integrated to identify cellular processes differentially regulated between culture conditions. Secretome characterization revealed a reduction in MSC batch variability when cultured as aggregates. Proteome and metabolome characterization showed upregulation of multiple protein and lipid metabolic pathways, downregulation of several cytoskeletal processes, and differential regulation of extracellular matrix synthesis. Integration of proteome and metabolome characterization revealed individual lipid metabolites and vesicle-trafficking proteins as key features for discriminating between culture conditions. Overall, this study identifies several aspects of MSC physiology that are altered by aggregate culture. Further exploration of these processes and pathways is needed to determine their potential role in regulating cell secretory capacity.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/metabolismo , Metaboloma , Proteoma , Agregação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Proteoma/análise , Proteoma/metabolismo
11.
ACS Biomater Sci Eng ; 6(9): 5084-5095, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455260

RESUMO

Intra-articular (IA) injection is an attractive route of administration for the treatment of osteoarthritis (OA). However, free drugs injected into the joint space are rapidly cleared and many of them can induce adverse off-target effects on different IA tissues. To overcome these limitations, we designed nanocomposite 4-arm-poly(ethylene glycol)-maleimide (PEG-4MAL) microgels, presenting cartilage- or synoviocyte-binding peptides, containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) as an IA small molecule drug delivery system. Microgels containing rhodamine B (model drug)-loaded PLGA NPs were synthesized using microfluidics technology and exhibited a sustained, near zero-order release of the fluorophore over 16 days in vitro. PEG-4MAL microgels presenting synoviocyte- or cartilage-targeting peptides specifically bound to rabbit and human synoviocytes or to bovine articular cartilage in vitro, respectively. Finally, using a rat model of post-traumatic knee OA, PEG-4MAL microgels were shown to be retained in the joint space for at least 3 weeks without inducing any joint degenerative changes as measured by EPIC-µCT and histology. Additionally, all microgel formulations were found trapped in the synovial membrane and significantly increased the IA retention time of a model small molecule near-infrared (NIR) dye compared to that of the free dye. These results suggest that peptide-functionalized nanocomposite PEG-4MAL microgels represent a promising intra-articular vehicle for tissue-localized drug delivery and prolonged IA drug retention for the treatment of OA.


Assuntos
Cartilagem Articular , Microgéis , Nanocompostos , Osteoartrite , Sinoviócitos , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Osteoartrite/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Coelhos , Ratos
12.
Tissue Eng Part A ; 26(1-2): 28-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31269875

RESUMO

Osteoarthritis (OA) is a widespread disease that continues to lack approved and efficacious treatments that modify disease progression. Micronized dehydrated human amnion/chorion membrane (µ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. The objectives of this study were to characterize the particle size distributions of two µ-dHACM formulations and to investigate the influence of these distributions on the in vivo therapeutic efficacy of µ-dHACM. Male Lewis rats underwent medial meniscus transection (MMT) or sham surgery, and intra-articular injections of saline, µ-dHACM, or reduced particle size µ-dHACM (RPS µ-dHACM) were administered at 24 hours postsurgery (n = 9 per treatment group). After 3 weeks, the animals were euthanized, and left legs harvested for equilibrium partitioning of an ionic contrast agent microcomputed tomography and histological analysis. µ-dHACM and RPS µ-dHACM particles were fluorescently tagged and particle clearance was tracked in vivo for up to 42 days postsurgery. Protein elution from both formulations was quantified in vitro. Treatment with µ-HACM, but not RPS µ-dHACM, reduced lesion volume in the MMT model 3 weeks postsurgery. In contrast, RPS µ-dHACM increased cartilage surface roughness and osteophyte cartilage thickness and volume compared to saline treatment. There was no difference of in vivo fluorescently tagged particle clearance between the two µ-dHACM sizes. RPS µ-dHACM showed significantly greater protein elution in vitro over 21 days. Overall, delivery of RPS µ-dHACM did result in an increase of in vivo joint degeneration and in vitro protein elution compared to µ-dHACM, but did not result in differences in joint clearance in vivo. These results suggest that particle size and factor elution may be tailorable factors that are important to optimize for particulate amniotic membrane treatment to be an effective therapy for OA. Impact Statement Osteoarthritis (OA) is a widespread disease that continues to lack treatments that modify the progression of the disease. Micronized dehydrated human amnion/chorion membrane (µ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. This work investigates the effects of particle size profile of the µ-dHACM particles and lays out the methods used in these studies. The results of this work will guide engineers in designing µ-dHACM treatments specifically and disease-modifying OA therapeutics generally, and it demonstrates the utility of novel therapeutic evaluation methods such as contrast-enhanced microcomputed tomography.


Assuntos
Âmnio/química , Osteoartrite/terapia , Animais , Meios de Contraste , Modelos Animais de Doenças , Masculino , Meniscos Tibiais/cirurgia , Ratos , Ratos Endogâmicos Lew , Microtomografia por Raio-X
13.
Spine (Phila Pa 1976) ; 45(8): E417-E424, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31703050

RESUMO

STUDY DESIGN: An in vivo study examining the functional osseointegration of smooth, rough, and porous surface topographies presenting polyether-ether-ketone (PEEK) or titanium surface chemistry. OBJECTIVE: To investigate the effects of surface topography and surface chemistry on implant osseointegration. SUMMARY OF BACKGROUND DATA: Interbody fusion devices have been used for decades to facilitate fusion across the disc space, yet debate continues over their optimal surface topography and chemistry. Though both factors influence osseointegration, the relative effects of each are not fully understood. METHODS: Smooth, rough, and porous implants presenting either a PEEK or titanium surface chemistry were implanted into the proximal tibial metaphyses of 36 skeletally mature male Sprague Dawley rats. At 8 weeks, animals were euthanized and bone-implant interfaces were subjected to micro-computed tomography analysis (n = 12), histology (n = 4), and biomechanical pullout testing (n = 8) to assess functional osseointegration and implant fixation. RESULTS: Micro-computed tomography analysis demonstrated that bone ingrowth was 38.9 ±â€Š2.8% for porous PEEK and 30.7 ±â€Š3.3% for porous titanium (P = 0.07). No differences in fixation strength were detected between porous PEEK and porous titanium despite titanium surfaces exhibiting an overall increase in bone-implant contact compared with PEEK (P < 0.01). Porous surfaces exhibited increased fixation strength compared with smooth and rough surfaces regardless of surface chemistry (P < 0.05). Across all groups both surface topography and chemistry had a significant overall effect on fixation strength (P < 0.05), but topography accounted for 65.3% of the total variance (ω = 0.65), whereas surface chemistry accounted for 5.9% (ω = 0.06). CONCLUSIONS: The effect of surface topography (specifically porosity) dominated the effect of surface chemistry in this study and could lead to further improvements in orthopedic device design. The poor osseointegration of existing smooth PEEK implants may be linked more to their smooth surface topography rather than their material composition. LEVEL OF EVIDENCE: N/A.


Assuntos
Prótese Ancorada no Osso/tendências , Cetonas/química , Osseointegração/efeitos dos fármacos , Osseointegração/fisiologia , Polietilenoglicóis/química , Titânio/química , Animais , Benzofenonas , Cetonas/administração & dosagem , Masculino , Polietilenoglicóis/administração & dosagem , Polímeros , Porosidade , Próteses e Implantes/tendências , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/administração & dosagem , Microtomografia por Raio-X/métodos
14.
Sci Rep ; 9(1): 4079, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858541

RESUMO

Volumetric muscle loss (VML) injury is characterized by a non-recoverable loss of muscle fibers due to ablative surgery or severe orthopaedic trauma, that results in chronic functional impairments of the soft tissue. Currently, the effects of VML on the oxidative capacity and adaptability of the remaining injured muscle are unclear. A better understanding of this pathophysiology could significantly shape how VML-injured patients and clinicians approach regenerative medicine and rehabilitation following injury. Herein, the data indicated that VML-injured muscle has diminished mitochondrial content and function (i.e., oxidative capacity), loss of mitochondrial network organization, and attenuated oxidative adaptations to exercise. However, forced PGC-1α over-expression rescued the deficits in oxidative capacity and muscle strength. This implicates physiological activation of PGC1-α as a limiting factor in VML-injured muscle's adaptive capacity to exercise and provides a mechanistic target for regenerative rehabilitation approaches to address the skeletal muscle dysfunction.


Assuntos
Músculo Esquelético/lesões , Doenças Musculares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Medicina Regenerativa , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Estresse Oxidativo/genética , Regeneração/genética
15.
Stem Cells Transl Med ; 8(6): 575-585, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666821

RESUMO

Bone morphogenetic protein 2 (BMP-2)-loaded collagen sponges remain the clinical standard for treatment of large bone defects when there is insufficient autograft, despite associated complications. Recent efforts to negate comorbidities have included biomaterials and gene therapy approaches to extend the duration of BMP-2 release and activity. In this study, we compared the collagen sponge clinical standard to chondroitin sulfate glycosaminoglycan (CS-GAG) scaffolds as a delivery vehicle for recombinant human BMP-2 (rhBMP-2) and rhBMP-2 expression via human BMP-2 gene inserted into mesenchymal stem cells (BMP-2 MSC). We demonstrated extended release of rhBMP-2 from CS-GAG scaffolds compared to their collagen sponge counterparts, and further extended release from CS-GAG gels seeded with BMP-2 MSC. When used to treat a challenging critically sized femoral defect model in rats, both rhBMP-2 and BMP-2 MSC in CS-GAG induced comparable bone formation to the rhBMP-2 in collagen sponge, as measured by bone volume, strength, and stiffness. We conclude that CS-GAG scaffolds are a promising delivery vehicle for controlling the release of rhBMP-2 and to mediate the repair of critically sized segmental bone defects. Stem Cells Translational Medicine 2019;8:575-585.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/efeitos dos fármacos , Sulfatos de Condroitina/química , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/farmacologia , Animais , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Doenças Ósseas/veterinária , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Colágeno/química , Feminino , Humanos , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Ratos , Ratos Nus , Proteínas Recombinantes/farmacologia
16.
J Tissue Eng Regen Med ; 12(8): 1867-1876, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29774991

RESUMO

Duchenne muscular dystrophy is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane, which renders the muscle susceptible to continuous damage. In Duchenne muscular dystrophy patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with noncontractile tissue, limit mobility and lifespan. Because the loss of dystrophin results in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study, we used both an established myotoxic injury model in wild-type (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hr after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fibre cross-section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at Day 14 than SC or saline-treated mice and a greater CSA at Day 10, compared with SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared with SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor. Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne , Regeneração , Animais , Agregação Celular , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia
17.
Acta Biomater ; 72: 352-361, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29563069

RESUMO

Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated. The objective of this study was to evaluate biological and mechanical behavior of PPP, with or without porosity, in comparison to PEEK. We examined four specific constructs: 1) solid PPP, 2) solid PEEK, 3) porous PPP and 4) porous PEEK. Pre-osteoblasts (MC3T3) exhibited similar cell proliferation among the materials. Osteogenic potential was significantly increased in the porous PPP scaffold as assessed by ALP activity and calcium mineralization. In vivo osseointegration was assessed by implanting the cylindrical materials into a defect in the metaphysis region of rat tibiae. Significantly more mineral ingrowth was observed in both porous scaffolds compared to the solid scaffolds, and porous PPP had a further increase compared to porous PEEK. Additionally, porous PPP implants showed bone formation throughout the porous structure when observed via histology. A computational simulation of mechanical push-out strength showed approximately 50% higher interfacial strength in the porous PPP implants compared to the porous PEEK implants and similar stress dissipation. These data demonstrate the potential utility of PPP for orthopaedic applications and show improved osseointegration when compared to the currently available polymeric material. STATEMENT OF SIGNIFICANCE: PEEK has been widely used in orthopaedic surgery; however, the ability to utilize PEEK for advanced fabrication methods, such as 3D printing and tailored porosity, remain challenging. We present a promising new orthopaedic biomaterial, Poly(para-phenylene) (PPP), which is a novel class of aromatic polymers with higher strength and stiffness than polyetheretherketone (PEEK). PPP has exceptional mechanical strength and stiffness due to its repeating aromatic rings that provide strong anti-rotational biaryl bonds. Furthermore, PPP has an amorphous structure making it relatively easier to manufacture (via molding or solvent-casting techniques) into different geometries with and without porosity. This ability to manufacture different architectures and use different processes while maintaining mechanical properties makes PPP a very promising potential orthopaedic biomaterial which may allow for closer matching of mechanical properties between the host bone tissue while also allowing for enhanced osseointegration. In this manuscript, we look at the potential of porous and solid PPP in comparison to PEEK. We measured the mechanical properties of PPP and PEEK scaffolds, tested these scaffolds in vitro for osteocompatibility with MC3T3 cells, and then tested the osseointegration and subsequent functional integration in vivo in a metaphyseal drill hole model in rat tibia. We found that PPP permits cell adhesion, growth, and mineralization in vitro. In vivo it was found that porous PPP significantly enhanced mineralization into the construct and increased the mechanical strength required to push out the scaffold in comparison to PEEK. This is the first study to investigate the performance of PPP as an orthopaedic biomaterial in vivo. PPP is an attractive material for orthopaedic implants due to the ease of manufacturing and superior mechanical strength.


Assuntos
Prótese Ancorada no Osso , Calcificação Fisiológica , Implantes Experimentais , Teste de Materiais , Osteogênese , Polímeros/química , Animais , Benzofenonas , Linhagem Celular , Cetonas , Masculino , Camundongos , Polietilenoglicóis , Porosidade , Ratos , Ratos Sprague-Dawley
18.
Biomater Sci ; 6(5): 1159-1167, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29564448

RESUMO

As a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model. After 21 days, cartilage thickness, volume, and attenuation were significantly increased with soluble TSG-6, indicating degenerative changes. In contrast, no significant differences were observed with TSG-6 loaded MP treatment, demonstrating that TSG-6 loaded MPs reduced cartilage damage following MMT injury. Ultimately, our results indicate that Hep-N can enhance TSG-6 anti-plasmin activity and that Hep-N-based biomaterials may be an effective method for TSG-6 delivery to treat OA.


Assuntos
Moléculas de Adesão Celular/uso terapêutico , Portadores de Fármacos/química , Heparina/análogos & derivados , Osteoartrite do Joelho/tratamento farmacológico , Animais , Cartilagem/efeitos dos fármacos , Moléculas de Adesão Celular/administração & dosagem , Moléculas de Adesão Celular/farmacologia , Injeções Intra-Articulares , Masculino , Ratos , Ratos Sprague-Dawley
19.
Sci Rep ; 7(1): 2029, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515465

RESUMO

The pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets. In this article we report the first characterization of exosomes miRNAs from human synovial fluid. The synovial fluid exosomes share similar characteristics (size, surface marker, miRNA content) with previously described exosomes in other body fluids. MiRNA microarray analysis showed OA specific exosomal miRNA of male and female OA. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified gender-specific target genes/signaling pathways. These pathway analyses showed that female OA specific miRNAs are estrogen responsive and target TLR (toll-like receptor) signaling pathways. Furthermore, articular chondrocytes treated with OA derived extracellular vesicles had decreased expression of anabolic genes and elevated expression of catabolic and inflammatory genes. In conclusion, synovial fluid exosomal miRNA content is altered in patients with OA and these changes are gender specific.


Assuntos
Exossomos/metabolismo , Expressão Gênica , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Sobrevivência Celular , Condrócitos/metabolismo , Biologia Computacional/métodos , Endocitose , Estrogênios/metabolismo , Exossomos/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Anotação de Sequência Molecular , Transdução de Sinais , Transcriptoma
20.
J Tissue Eng Regen Med ; 11(10): 2876-2884, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27339032

RESUMO

Immunogenicity of fetal bovine serum (FBS) poses a problem for its use in the propagation of autologous mesenchymal stromal cells (MSCs) for cell therapy. Human platelet lysate (hPL), an enriched growth factor solution containing mitogenic and angiogenic cues, has potential utility in replacing FBS for human MSC (hMSC) delivery strategies. Despite its potentiation of hMSC number in vitro, little is known concerning its capacity to supplement implanted hMSC-seeded constructs and promote tissue regeneration in vivo. In this study, we tested the effects of incorporating hPL in cell-seeded constructs implanted subcutaneously into immunocompromised rats, investigated in vitro interactions between hPL and rat MSCs (rMSCs) and determined interspecies variability in the PL product [hPL vs rat PL (rPL)] and its effect on cultured MSCs (hPL/hMSCs vs rPL/rMSCs). The overarching aim was to determine the utility of hPL to foster MSC survival in preclinical rodent models. Exposure to hPL-supplemented media resulted in rMSC death, by a process attributable to heat-labile proteins, but not membrane attack complex formation. In the in vitro syngeneic model, the rodent product proved fundamentally distinct from the human product, with rPL having substantially lower growth factor content than hPL. Moreover, contrary to the positive effects of hPL on hMSC expansion, rPL did not reduce rMSC doubling time for the serum concentrations examined. When tested in vivo, hPL did not improve cell survival within hydrogel constructs through 2 weeks postimplantation. In summary, this study highlights the many facets of xenogenicity and interspecies variability that must be considered in the preclinical evaluation of hPL. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Plaquetas/citologia , Extratos Celulares/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hidrogéis/farmacologia , Hospedeiro Imunocomprometido , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos Nus , Especificidade da Espécie , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA