Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791585

RESUMO

ROS-dependent induction of oxidative damage can be used as a trigger initiating genetically determined non-specific protection in plant cells and tissues. Plants are potentially able to withstand various specific (toxic, osmotic) factors of abiotic effects, but do not have sufficient or specific sensitivity to form an adequate effective response. In this work, we demonstrate one of the possible approaches for successful cold acclimation through the formation of effective protection of photosynthetic structures due to the insertion of the heterologous FeSOD gene into the tobacco genome under the control of the constitutive promoter and equipped with a signal sequence targeting the protein to plastid. The increased enzymatic activity of superoxide dismutase in the plastid compartment of transgenic tobacco plants enables them to tolerate the oxidative factor of environmental stresses scavenging ROS. On the other hand, the cost of such resistance is quite high and, when grown under normal conditions, disturbs the arrangement of the intrachloroplastic subdomains leading to the modification of stromal thylakoids, probably significantly affecting the photosynthesis processes that regulate the efficiency of photosystem II. This is partially compensated for by the fact that, at the same time, under normal conditions, the production of peroxide induces the activation of ROS detoxification enzymes. However, a violation of a number of processes, such as the metabolism of accumulation, and utilization and transportation of sugars and starch, is significantly altered, which leads to a shift in metabolic chains. The expected step for further improvement of the applied technology could be both the use of inducible promoters in the expression cassette, and the addition of other genes encoding for hydrogen peroxide-scavenging enzymes in the genetic construct that are downstream in the metabolic chain.


Assuntos
Nicotiana , Estresse Oxidativo , Plantas Geneticamente Modificadas , Plastídeos , Superóxido Dismutase , Nicotiana/genética , Plastídeos/metabolismo , Plastídeos/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura Baixa , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762301

RESUMO

Transgenic tobacco plants overexpressing the choline oxidase gene from A. globiformis showed an increase in resistance at the level of primary and secondary biosynthesis of metabolites, removing the damage characteristic of salinity and stabilizing the condition of plants. We used 200 mM NaCl, which inhibits the growth of tobacco plants at all stages of development. Leaves of transgenic and wild-type (WT) plants Nicotiána tabácum were used for biochemical, cytological and molecular biological analysis. However, for transgenic lines cultivated under normal conditions (without salinity), we noted juvenile characteristics, delay in flowering, and slowing down of development, including the photosynthetic apparatus. This caused changes in the amount of chlorophyll, a delay in the plastid grana development with the preservation of prolamellar bodies. It also caused changes in the amount of sugars and indirectly downstream processes. A significant change in the activity of antioxidant enzymes and a change in metabolism is probably compensated by the regulation of a number of genes, the expression level of which was also changed. Thus, the tolerance of transgenic tobacco plants to salinity, which manifested itself as a result of the constitutive expression of codA, demonstrates an advantage over WT plants, but in the absence of salinity, transgenic plants did not have such advantages due to juvenilization.


Assuntos
Antioxidantes , Nicotiana , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Clorofila , Expressão Gênica
3.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235213

RESUMO

Tea plants (Camellia sinensis L.) are phenol-accumulating crops that are widely used for public health. The healing effect of tea leaf products is due to the biosynthesis of such phenolic compounds (PCs) as flavans, which have P-vitamin capillary-strengthening activity. Due to their limited habitat and the value of their specialized metabolites of a phenolic nature, a promising approach is to establish in vitro cultures from them that retain the ability to form PCs, which is characteristic of ex vivo tea plants. The aim of this study was to investigate the effect of exogenic H2O2 (0.01 mM; 0.1 mM; 1 mM) on the growth, morphology, degree of stress response, and accumulation of various phenolic compounds in tea plant callus cultures of different ages (24 or 36 days) grown under different cultivation conditions (darkness or light). According to the results obtained, the H2O2 effect on tea callus cultures of different ages did not cause changes in their morphophysiological characteristics, both after 2 h of exposure (rapid response of callus culture, RRCC) and after 48 h (delayed response of callus culture, DRCC). The determination of the malondialdehyde (MDA) content, which serves as an indicator of changes in the level of lipid peroxidation (LPO) and the presence of stress responses in plant cells, indicated either its maintenance at the control level, a decrease, or an increase. All these effects depended on the growth conditions of the tea callus cultures (darkness or light), their age, the duration of exposure (rapid or delayed response), and the H2O2 concentration. Similar trends were noted for the total content of PCs as well as the amount of flavans, proanthocyanidins (soluble and insoluble forms), and lignin. The plant cell responses reflected changes in its adaptation programs, when specialized metabolites act as a target for the action of H2O2, thereby contributing to an increase in their resistance.


Assuntos
Camellia sinensis , Proantocianidinas , Camellia sinensis/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Malondialdeído/metabolismo , Fenóis/metabolismo , Fenóis/farmacologia , Folhas de Planta/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Proantocianidinas/metabolismo , Chá/metabolismo , Vitaminas/metabolismo
4.
Plants (Basel) ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070894

RESUMO

In this study the transgenic lines (TLs) of tobacco (Nicotianatabacum L.), which overexpress the heterologous gene encoding the bacterial enzyme choline oxidase were evaluated. The goal of our work is to study the effect of choline oxidase gene expression on the sensitivity of plant tissues to the action of NaCl. The regenerative capacity, rhizogenesis, the amount of photosynthetic pigments and osmotically active compounds (proline and glycine betaine) were assessed by in vitro cell culture methods using biochemical and morphological parameters. Transgenic lines with confirmed expression were characterized by high regeneration capacity from callus in the presence of 200 mmol NaCl, partial retention of viability at 400 mmol NaCl. These data correlated with the implicit response of regenerants and whole plants to the harmful effects of salinity. They turned out to be less sensitive to the presence of 200 mmol NaCl in the cultivation medium, in contrast to the WT plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA