Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Evol Med Public Health ; 10(1): 221-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557512

RESUMO

Background and objectives: Hepatocellular carcinoma occurs frequently in prosimians, but the cause of these liver cancers in this group is unknown. Characterizing the genetic changes associated with hepatocellular carcinoma in prosimians may point to possible causes, treatments and methods of prevention, aiding conservation efforts that are particularly crucial to the survival of endangered lemurs. Although genomic studies of cancer in non-human primates have been hampered by a lack of tools, recent studies have demonstrated the efficacy of using human exome capture reagents across primates. Methodology: In this proof-of-principle study, we applied human exome capture reagents to tumor-normal pairs from five lemurs with hepatocellular carcinoma to characterize the mutational landscape of this disease in lemurs. Results: Several genes implicated in human hepatocellular carcinoma, including ARID1A, TP53 and CTNNB1, were mutated in multiple lemurs, and analysis of cancer driver genes mutated in these samples identified enrichment of genes involved with TP53 degradation and regulation. In addition to these similarities with human hepatocellular carcinoma, we also noted unique features, including six genes that contain mutations in all five lemurs. Interestingly, these genes are infrequently mutated in human hepatocellular carcinoma, suggesting potential differences in the etiology and/or progression of this cancer in lemurs and humans. Conclusions and implications: Collectively, this pilot study suggests that human exome capture reagents are a promising tool for genomic studies of cancer in lemurs and other non-human primates. Lay Summary: Hepatocellular carcinoma occurs frequently in prosimians, but the cause of these liver cancers is unknown. In this proof-of-principle study, we applied human DNA sequencing tools to tumor-normal pairs from five lemurs with hepatocellular carcinoma and compared the lemur mutation profiles to those of human hepatocellular carcinomas.

2.
Mol Biol Evol ; 37(2): 320-326, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642480

RESUMO

Cancer progression is an evolutionary process. During this process, evolving cancer cell populations encounter restrictive ecological niches within the body, such as the primary tumor, circulatory system, and diverse metastatic sites. Efforts to prevent or delay cancer evolution-and progression-require a deep understanding of the underlying molecular evolutionary processes. Herein we discuss a suite of concepts and tools from evolutionary and ecological theory that can inform cancer biology in new and meaningful ways. We also highlight current challenges to applying these concepts, and propose ways in which incorporating these concepts could identify new therapeutic modes and vulnerabilities in cancer.


Assuntos
Genômica/métodos , Neoplasias/genética , Progressão da Doença , Evolução Molecular , Aptidão Genética , Humanos , Filogenia , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA