Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386295

RESUMO

Current methods to detect post-translational modifications of proteins, such as phosphate groups, cannot measure single molecules or differentiate between closely spaced phosphorylation sites. We detect post-translational modifications at the single-molecule level on immunopeptide sequences with cancer-associated phosphate variants by controllably drawing the peptide through the sensing region of a nanopore. We discriminate peptide sequences with one or two closely spaced phosphates with 95% accuracy for individual reads of single molecules.

2.
Nucleic Acids Res ; 50(20): 11876-11894, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370101

RESUMO

The conserved RNA helicase UPF1 coordinates nonsense-mediated mRNA decay (NMD) by engaging with mRNAs, RNA decay machinery and the terminating ribosome. UPF1 ATPase activity is implicated in mRNA target discrimination and completion of decay, but the mechanisms through which UPF1 enzymatic activities such as helicase, translocase, RNP remodeling, and ATPase-stimulated dissociation influence NMD remain poorly defined. Using high-throughput biochemical assays to quantify UPF1 enzymatic activities, we show that UPF1 is only moderately processive (<200 nt) in physiological contexts and undergoes ATPase-stimulated dissociation from RNA. We combine an in silico screen with these assays to identify and characterize known and novel UPF1 mutants with altered helicase, ATPase, and RNA binding properties. We find that UPF1 mutants with substantially impaired processivity (E797R, G619K/A546H), faster (G619K) or slower (K547P, E797R, G619K/A546H) unwinding rates, and/or reduced mechanochemical coupling (i.e. the ability to harness ATP hydrolysis for work; K547P, R549S, G619K, G619K/A546H) can still support efficient NMD of well-characterized targets in human cells. These data are consistent with a central role for UPF1 ATPase activity in driving cycles of RNA binding and dissociation to ensure accurate NMD target selection.


Assuntos
Adenosina Trifosfatases , Degradação do RNAm Mediada por Códon sem Sentido , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transativadores/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Helicases/genética , RNA/metabolismo
3.
Nucleic Acids Res ; 50(18): 10601-10613, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36165957

RESUMO

Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.


Assuntos
RecQ Helicases/química , Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples , Escherichia coli/genética , Escherichia coli/metabolismo , Nanoporos , Ácidos Nucleicos , RecQ Helicases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(36): e2202489119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037333

RESUMO

We used single-molecule picometer-resolution nanopore tweezers (SPRNT) to resolve the millisecond single-nucleotide steps of superfamily 1 helicase PcrA as it translocates on, or unwinds, several kilobase-long DNA molecules. We recorded more than two million enzyme steps under various assisting and opposing forces in diverse adenosine tri- and diphosphate conditions to comprehensively explore the mechanochemistry of PcrA motion. Forces applied in SPRNT mimic forces and physical barriers PcrA experiences in vivo, such as when the helicase encounters bound proteins or duplex DNA. We show how PcrA's kinetics change with such stimuli. SPRNT allows for direct association of the underlying DNA sequence with observed enzyme kinetics. Our data reveal that the underlying DNA sequence passing through the helicase strongly influences the kinetics during translocation and unwinding. Surprisingly, unwinding kinetics are not solely dominated by the base pairs being unwound. Instead, the sequence of the single-stranded DNA on which the PcrA walks determines much of the kinetics of unwinding.


Assuntos
DNA Helicases , Nucleotídeos , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples , Cinética
5.
Nucleic Acids Res ; 47(5): 2506-2513, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30649515

RESUMO

Motor enzymes that process nucleic-acid substrates play vital roles in all aspects of genome replication, expression, and repair. The DNA and RNA nucleobases are known to affect the kinetics of these systems in biologically meaningful ways. Recently, it was shown that DNA bases control the translocation speed of helicases on single-stranded DNA, however the cause of these effects remains unclear. We use single-molecule picometer-resolution nanopore tweezers (SPRNT) to measure the kinetics of translocation along single-stranded DNA by the helicase Hel308 from Thermococcus gammatolerans. SPRNT can measure enzyme steps with subangstrom resolution on millisecond timescales while simultaneously measuring the absolute position of the enzyme along the DNA substrate. Previous experiments with SPRNT revealed the presence of two distinct substates within the Hel308 ATP hydrolysis cycle, one [ATP]-dependent and the other [ATP]-independent. Here, we analyze in-depth the apparent sequence dependent behavior of the [ATP]-independent step. We find that DNA bases at two sites within Hel308 control sequence-specific kinetics of the [ATP]-independent step. We suggest mechanisms for the observed sequence-specific translocation kinetics. Similar SPRNT measurements and methods can be applied to other nucleic-acid-processing motor enzymes.


Assuntos
DNA Helicases/genética , DNA de Cadeia Simples/genética , DNA/genética , Translocação Genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , DNA/química , DNA Helicases/química , Hidrólise , Cinética , Nanoporos , Thermococcus/enzimologia
6.
Proc Natl Acad Sci U S A ; 114(45): 11932-11937, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078357

RESUMO

Enzymes that operate on DNA or RNA perform the core functions of replication and expression in all of biology. To gain high-resolution access to the detailed mechanistic behavior of these enzymes, we developed single-molecule picometer-resolution nanopore tweezers (SPRNT), a single-molecule technique in which the motion of polynucleotides through an enzyme is measured by a nanopore. SPRNT reveals two mechanical substates of the ATP hydrolysis cycle of the superfamily 2 helicase Hel308 during translocation on single-stranded DNA (ssDNA). By analyzing these substates at millisecond resolution, we derive a detailed kinetic model for Hel308 translocation along ssDNA that sheds light on how superfamily 1 and 2 helicases turn ATP hydrolysis into motion along DNA. Surprisingly, we find that the DNA sequence within Hel308 affects the kinetics of helicase translocation.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , DNA de Cadeia Simples/química , Pinças Ópticas , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Humanos , Cinética , Imagem Individual de Molécula , Translocação Genética/fisiologia
7.
EMBO Mol Med ; 7(4): 488-505, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750210

RESUMO

Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects induced by the GBS pigment trigger K(+) efflux leading to osmotic lysis of red blood cells or pyroptosis in human macrophages. Macrophages lacking the NLRP3 inflammasome recovered from pigment-induced cell damage. In a murine model of in utero infection, hyperpigmented GBS strains induced fetal injury in both an NLRP3 inflammasome-dependent and NLRP3 inflammasome-independent manner. These results demonstrate that the dual mechanism of action of the bacterial pigment/lipid toxin leading to hemolysis or pyroptosis exacerbates fetal injury and suggest that preventing both activities of the hemolytic lipid is likely critical to reduce GBS fetal injury and preterm birth.


Assuntos
Toxinas Bacterianas , Permeabilidade da Membrana Celular , Doenças Fetais , Lipídeos de Membrana , Piroptose/imunologia , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/toxicidade , Linhagem Celular Tumoral , Feminino , Doenças Fetais/imunologia , Doenças Fetais/microbiologia , Doenças Fetais/patologia , Humanos , Masculino , Lipídeos de Membrana/imunologia , Lipídeos de Membrana/toxicidade , Camundongos , Camundongos Knockout , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/patogenicidade
8.
Proc Natl Acad Sci U S A ; 110(47): 18904-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24167255

RESUMO

Precise and efficient mapping of epigenetic markers on DNA may become an important clinical tool for prediction and identification of ailments. Methylated CpG sites are involved in gene expression and are biomarkers for diseases such as cancer. Here, we use the engineered biological protein pore Mycobacterium smegmatis porin A (MspA) to detect and map 5-methylcytosine and 5-hydroxymethylcytosine within single strands of DNA. In this unique single-molecule tool, a phi29 DNA polymerase draws ssDNA through the pore in single-nucleotide steps, and the ion current through the pore is recorded. Comparing current levels generated with DNA containing methylated CpG sites to current levels obtained with unmethylated copies of the DNA reveals the precise location of methylated CpG sites. Hydroxymethylation is distinct from methylation and can also be mapped. With a single read, the detection efficiency in a quasirandom DNA strand is 97.5 ± 0.7% for methylation and 97 ± 0.9% for hydroxymethylation.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Metilação de DNA , Modelos Moleculares , Nanoporos , Porinas/metabolismo , 5-Metilcitosina/isolamento & purificação , Teorema de Bayes , Citosina/isolamento & purificação , Citosina/metabolismo , Epigenômica/métodos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA