Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496453

RESUMO

Background: Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically phosphorylated tau protein in the brain, leading to prion-like propagation and aggregation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. Methods: We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. Results: We found that the skin prion-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. Conclusions: Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.

2.
Parkinsonism Relat Disord ; 111: 105433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37141688

RESUMO

INTRODUCTION: COVID-19 infection is known to cause various neurological symptoms, and potentially increases the risk of developing subsequent neurodegenerative conditions including parkinsonism. To our knowledge, no study to date has used a large data set in the United States to ascertain the risk of developing incident Parkinson disease in patients with history of COVID-19 infection compared to the risk amongst those without prior COVID-19 infection. METHODS: We utilized data from TriNetX electronic health records network which includes 73 healthcare organizations and over 107 million patients. We compared adult patients with and without COVID-19 infection, with health records from January 1, 2020 through July 26, 2022, to determine the relative risk of developing Parkinson disease stratified by 3-month intervals. We used propensity score matching to control for patients' age, sex, and smoking history. RESULTS: We collected data on 27,614,510 patients meeting our study criteria: 2,036,930 patients with a positive COVID-19 infection (COVID-19) and 25,577,580 without a positive COVID-19 infection (non-COVID-19). After propensity score matching, age, sex, and smoking history differences became non-significant, with 2,036,930 patients in each cohort. After propensity score matching, we found significantly increased odds of new onset Parkinson disease in the COVID-19 cohort at three, six, nine, and twelve months from the index event, with peak odds ratio at six months. After twelve months there is no significant difference between the COVID-19 group and non-COVID-19 group. CONCLUSIONS: There may be a transiently increased risk of developing Parkinson disease in the first year following COVID-19 infection.


Assuntos
COVID-19 , Doença de Parkinson , Adulto , Humanos , Estados Unidos , SARS-CoV-2 , Estudos Retrospectivos , Doença de Parkinson/epidemiologia , Registros Eletrônicos de Saúde
3.
NPJ Parkinsons Dis ; 7(1): 99, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782640

RESUMO

Skin α-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of α-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of α-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The α-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9% and showed a high degree of inter-rater agreement between the two laboratories (92.2%). Higher α-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The α-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, α-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms.

4.
J Neuroimmunol ; 353: 577521, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607505

RESUMO

BACKGROUND: Serious neurological complications of SARS-CoV-2 are increasingly being recognized. CASE: We report a novel case of HHV6 myelitis with parainfectious MOG-IgG in the setting of COVID-19-induced lymphopenia and hypogammaglobulinemia. The patient experienced complete neurological recovery with gancyclovir, high dose corticosteroids, and plasma exchange. To our knowledge, this is the first case of HHV6 reactivation in the central nervous system in the setting of COVID19 infection and the first case of MOG-IgG myelitis in the setting of SARS-CoV-2 and HHV6 coinfection. CONCLUSION: Patients with neurological manifestations in the setting of COVID19-related immunodeficiency should be tested for opportunistic infections including HHV6. Viral infection is a known trigger for MOG-IgG and therefore this antibody should be checked in patients with SARS-CoV-2 associated demyelination.


Assuntos
COVID-19/complicações , Coinfecção/complicações , Linfopenia/virologia , Mielite Transversa/virologia , Infecções por Roseolovirus/imunologia , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Autoanticorpos/imunologia , Autoantígenos/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Ganciclovir/uso terapêutico , Herpesvirus Humano 6 , Humanos , Masculino , Metilprednisolona/uso terapêutico , Pessoa de Meia-Idade , Mielite Transversa/imunologia , Mielite Transversa/terapia , Troca Plasmática/métodos , Infecções por Roseolovirus/tratamento farmacológico , SARS-CoV-2 , Ativação Viral/imunologia
6.
JAMA Neurol ; 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32986090

RESUMO

IMPORTANCE: Deposition of the pathological α-synuclein (αSynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. OBJECTIVE: To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS: This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. MAIN OUTCOMES AND MEASURES: Skin αSynP seeding activity was analyzed by RT-QuIC and PMCA assays. RESULTS: A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of αSynP seeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. CONCLUSIONS AND RELEVANCE: This study provides proof-of-concept that skin αSynP seeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies.

7.
Gait Posture ; 38(1): 109-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23218768

RESUMO

Gait and balance disturbances in Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. Deep brain stimulation (DBS) is a treatment option once therapeutic benefits from medication are limited due to motor fluctuations and dyskinesia. Optimizing DBS parameters for gait and balance can be significantly more challenging than for other PD motor symptoms. Furthermore, inter-rater reliability of the standard clinical PD assessment scale, Unified Parkinson's Disease Rating Scale (UPDRS), may introduce bias and washout important features of gait and balance that may respond differently to PD therapies. Study objectives were to evaluate clinician UPDRS gait and balance scoring inter-rater reliability, UPDRS sensitivity to different aspects of gait and balance, and how kinematic features extracted from motion sensor data respond to stimulation. Forty-two subjects diagnosed with PD were recruited with varying degrees of gait and balance impairment. All subjects had been prescribed dopaminergic medication, and 20 subjects had previously undergone DBS surgery. Subjects performed seven items of the gait and balance subset of the UPDRS while wearing motion sensors on the sternum and each heel and thigh. Inter-rater reliability varied by UPDRS item. Correlation coefficients between at least one kinematic feature and corresponding UPDRS scores were greater than 0.75 for six of the seven items. Kinematic features improved (p<0.05) from DBS-OFF to DBS-ON for three UPDRS items. Despite achieving high correlations with the UPDRS, evaluating individual kinematic features may help address inter-rater reliability issues and rater bias associated with focusing on different aspects of a motor task.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha/diagnóstico , Doença de Parkinson/diagnóstico , Equilíbrio Postural , Transtornos de Sensação/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Estudos de Avaliação como Assunto , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Reprodutibilidade dos Testes , Transtornos de Sensação/etiologia , Transtornos de Sensação/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA