Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(2): 1047-1057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193206

RESUMO

The aim of this study was to clarify the effects of the high-molecular-weight glutenin subunits (HMW-GSs) 1Dx3+1Dy12 (3+12) and 1Dx4+1Dy12 (4+12) at the Glu-D1 locus on gluten and Chinese steamed bread (CSB) quality. The grain protein content and composition, gluten content and gluten index, farinograph properties, and CSB quality were investigated using four wheat near-isogenic lines (NILs) carrying HMW-GSs 1Dx2+1Dy12 (2+12), 3+12, 4+12 and 1Dx5+1Dy10 (5+10), respectively. The unextractable polymeric protein (UPP) and glutenin macropolymer (GMP) content, gluten index, dough development time, stability time, and farinograph quality number of four NILs all ranked as 5+10 > 3+12 > 2+12/4+12, such as the gluten index ranked as 5+10(44.88%) > 3+12(40.07%) > 2+12(37.46%)/4+12(35.85%); however, their contributions to the quality of CSB were ranked as 3+12 > 5+10 > 2+12/4+12, such as the specific volume ranked as 3+12(2.64 mL/g) > 5+10(2.49 mL/g) > 2+12(2.36 mL/g)/4+12(2.35 mL/g), which indicated that a suitable gluten strength (3+12) was crucial to making high-quality CSB. In addition, subunits 4+12 had a similar quality performance to low-quality subunits 2+12. All these findings suggested that, except for the acknowledged high-quality subunits 5+10, the introduction of 3+12 at the Glu-D1 locus is an efficient way for quality improvement of gluten as well as CSB.


Assuntos
Pão , Triticum , Triticum/química , Glutens/química , China , Peso Molecular
2.
Front Nutr ; 9: 1067597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590202

RESUMO

Sprouts are recognized as nutritional and functional vegetables. In this study, 17 selected seeds were germinated simultaneously. The antioxidant capacity and total phenolic content (TPC) were determined for seeds and sprouts of all species. Both seed and sprout of white radish, with the highest antioxidant capacity, and TPC among all the 17 species, were further determined for phenolic metabolomics. Four phenolic classes with 316 phenolic metabolites were identified. 198 significantly different metabolites with 146 up-regulated and 52 down-regulated were confirmed, and high amounts of phenolic acids and flavonoids were found to be accumulated in the sprout. Several metabolism and biosynthesis, including phenylpropanoid, favone and flavonol, phenylalanine, and various secondary metabolites, were significantly activated. Significant correlations were found among FRAP, DPPH, ABTS, TPC, and phenolic profiles. Therefore, white radish sprout could be served as antioxidant and could be a good source of dietary polyphenols.

3.
Ecotoxicol Environ Saf ; 210: 111865, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418154

RESUMO

Cd contamination in rice grains has become a topic of great concern because of the high health risks associated with the long-term consumption of Cd-contaminated rice. Identification of Cd sources in rice grains by scientific methods is important for controlling heavy metal pollution and protecting human health. Here, the Cd concentrations and Cd isotopic compositions of rice plants (root, stem, leaf, and grain) and topsoil, and possible pollution sources (agricultural fertilizers, industrial dust, and automobile exhaust) were analyzed using an instrument of inductively coupled plasma mass spectrometry (ICP-MS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results showed variations in the Cd isotopes of different components of rice plants and the fractionation coefficient of rice grains relative to topsoil (Δ114/110Cdrice grains-topsoil = 0.25‰). The contributions of pollution sources to rice grains were realized by combining the Cd isotopic composition with an isotopic mixing model (Isosource). The analysis showed that all three possible pollution sources contributed to the Cd in the rice grains in the field, the average Cd contribution of industrial dust, agricultural fertilizers and automobile exhaust was 87%, 9%, and 4%, respectively. Our study provides a feasible method for the identification of pollution sources of Cd in rice grains at the field scale and demonstrates that Cd isotopic composition is one of the powerful tools to trace the pollution sources of Cd in crops.


Assuntos
Cádmio/análise , Grão Comestível/química , Oryza , Poluentes do Solo/análise , Cádmio/química , Fracionamento Químico , Poeira , Monitoramento Ambiental , Fertilizantes , Humanos , Indústrias , Isótopos/análise , Emissões de Veículos
4.
Toxicol Sci ; 128(2): 524-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22610606

RESUMO

Pigs were exposed to cadmium (Cd) (in the form of CdCl(2)) concentrations ranging from 0 to 32mg Cd/kg feed for 100 days. Urinary cadmium (U-Cd) and blood cadmium (B-Cd) levels were determined as indicators of Cd exposure. Urinary levels of ß(2)-microglobulin (ß(2)-MG), α(1)-microglobulin (α(1)-MG), N-acetyl-ß-D-glucosaminidase (NAG), cadmium-metallothionein (Cd-MT), and retinol binding protein (RBP) were determined as biomarkers of tubular dysfunction. U-Cd concentrations were increased linearly with time and dose, whereas B-Cd reached two peaks at 40 days and 100 days in the group exposed to 32mg Cd/kg. Hyper-metallothionein-urinary (HyperMTuria) and hyper-N-acetyl-ß-D-glucosaminidase-urinary (hyperNAGuria) emerged from 80 days onwards in the group exposed to 32mg Cd/kg feed, followed by hyper-ß2-microglobulin-urinary (hyperß2-MGuria) and hyper-retinol-binding-protein-urinary (hyperRBPuria) from 100 days onwards. The relationships between the Cd exposure dose and biomarkers of exposure (as well as the biomarkers of effect) were examined, and significant correlations were found between them (except for α(1)-MG). Dose-response relationships between Cd exposure dose and biomarkers of tubular dysfunction were studied. The critical concentration of Cd exposure dose was calculated by the benchmark dose (BMD) method. The BMD(10)/BMDL(10) was estimated to be 1.34/0.67, 1.21/0.88, 2.75/1.00, and 3.73/3.08mg Cd/kg feed based on urinary RBP, NAG, Cd-MT, and ß(2)-MG, respectively. The calculated tolerable weekly intake of Cd for humans was 1.4 µg/kg body weight based on a safety factor of 100. This value is lower than the currently available values set by several different countries. This indicates a need for further studies on the effects of Cd and a re-evaluation of the human health risk assessment for the metal.


Assuntos
Cádmio/toxicidade , Rim/efeitos dos fármacos , Acetilglucosaminidase/urina , alfa-Globulinas/urina , Animais , Relação Dose-Resposta a Droga , Rim/fisiopatologia , Proteínas de Ligação ao Retinol/urina , Suínos , Microglobulina beta-2/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA