Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(4): 1250-1266, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38436588

RESUMO

The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.


Assuntos
Platina , Sideróforos , Humanos , Sideróforos/farmacologia , Platina/farmacologia , Escherichia coli , Oxaliplatina/farmacologia , Antibacterianos/farmacologia , Enterobactina , Dano ao DNA
2.
Acc Chem Res ; 57(7): 1046-1056, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483177

RESUMO

ConspectusSiderophores are secondary metabolites utilized by bacteria to acquire iron (Fe), an essential transition metal nutrient. Fe levels in the host environment are tightly regulated and can be further restricted to starve invading bacterial pathogens in a host-defense process known as nutritional immunity. To survive and colonize the Fe-limited host environment, bacteria produce siderophores and express cognate siderophore transport machinery. These active transport pathways present an opportunity for selective and efficient drug delivery into bacterial cells, motivating decades of research on synthetic siderophore-antibiotic conjugates (SACs) as a Trojan-horse strategy for the development of targeted antibiotics.Enterobactin (Ent) is a triscatecholate siderophore produced and utilized by many Gram-negative bacteria, including all Escherichia coli and Salmonella species. Within these species, pathogenic strains cause a variety of human diseases including urinary tract infections, gastroenteritis, and sepsis. Infections caused by these Gram-negative pathogens can be difficult to treat because of the impermeability of the outer membrane (OM). This impermeability can be overcome by utilizing siderophores as drug delivery vectors for targeting Gram-negative pathogens. Ent is a promising delivery vector because it undergoes active transport across the OM mediated by the Ent uptake machinery after scavenging Fe(III) from the extracellular environment. Despite the well-elucidated chemistry and biology of Ent, its use for SAC development was hampered by the lack of an appropriate functional group for cargo attachment. Our laboratory addressed this need by designing and synthesizing monofunctionalized Ent scaffolds. Over the past decade, we have used these scaffolds to explore Ent-based SACs with a variety of drug warheads, including ß-lactam and fluoroquinolone antibiotics, and Pt(IV) prodrugs. Investigations of the antibacterial activities of these conjugates and their cellular fates have informed our design principles and revealed approaches to achieving enhanced antibacterial potency and pathogen-targeted activity. Collectively, our studies of Ent-drug conjugates have provided discoveries, understanding, and invaluable insights for future design and evaluation of SACs.In this Account, we present the story of our work on Ent-drug conjugates that began about ten years ago with the development of monofunctionalized Ent scaffolds and the design and synthesis of various conjugates based on these scaffolds. We describe the antibacterial activity profiles and uptake pathways of Ent-drug conjugates harboring traditional antibiotics and repurposed platinum anticancer agents as well as studies that address cellular targets and fates. Finally, we discuss other applications of monofunctionalized Ent scaffolds, including a siderophore-based immunization strategy. We intend for this Account to inspire further investigations into the fundamental understanding and translational applications of siderophores and siderophore-drug conjugates.


Assuntos
Enterobactina , Compostos Férricos , Humanos , Enterobactina/química , Enterobactina/metabolismo , Preparações Farmacêuticas , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Escherichia coli/metabolismo
3.
J Am Chem Soc ; 144(28): 12756-12768, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35803281

RESUMO

The global crisis of untreatable microbial infections necessitates the design of new antibiotics. Drug repurposing is a promising strategy for expanding the antibiotic repertoire. In this study, we repurpose the clinically approved anticancer agent cisplatin into a targeted antibiotic by conjugating its Pt(IV) prodrug to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron (Fe) acquisition. The l-Ent-Pt(IV) conjugate (l-EP) exhibits antibacterial activity against Escherichia coli K12 and the uropathogenic isolate E. coli CFT073. Similar to cisplatin, l-EP causes a filamentous morphology in E. coli and initiates lysis in lysogenic bacteria. Studies with E. coli mutants defective in Ent transport proteins show that Ent mediates the delivery of l-EP into the E. coli cytoplasm, where reduction of the Pt(IV) prodrug releases the cisplatin warhead, causing growth inhibition and filamentation of E. coli. Substitution of Ent with its enantiomer affords the d-Ent-Pt(IV) conjugate (d-EP), which displays enhanced antibacterial activity, presumably because d-Ent cannot be hydrolyzed by Ent esterases and thus Fe cannot be released from this conjugate. E. coli treated with l/d-EP accumulate ≥10-fold more Pt as compared to cisplatin treatment. By contrast, human embryonic kidney cells (HEK293T) accumulate cisplatin but show negligible Pt uptake after treatment with either conjugate. Overall, this work demonstrates that the attachment of a siderophore repurposes a Pt anticancer agent into a targeted antibiotic that is recognized and transported by siderophore uptake machinery, providing a design strategy for drug repurposing by siderophore modification and heavy-metal "trojan-horse" antibiotics.


Assuntos
Infecções por Escherichia coli , Pró-Fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cisplatino/farmacologia , Enterobactina/metabolismo , Escherichia coli/metabolismo , Células HEK293 , Humanos , Platina/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Sideróforos
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(5): 507-513, 2022 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-35644190

RESUMO

OBJECTIVES: To evaluate the early risk factors for death in neonates with persistent pulmonary hypertension of the newborn (PPHN) treated with inhaled nitric oxide (iNO). METHODS: A retrospective analysis was performed on 105 infants with PPHN (gestational age ≥34 weeks and age <7 days on admission) who received iNO treatment in the Department of Neonatology, Children's Hospital of Nanjing Medical University, from July 2017 to March 2021. Related general information and clinical data were collected. According to the clinical outcome at discharge, the infants were divided into a survival group with 79 infants and a death group with 26 infants. Univariate and multivariate Cox regression analyses were used to evaluate the risk factors for death in infants with PPHN treated with iNO. The receiver operating characteristic (ROC) curve was used to calculate the cut-off values of the factors in predicting the death risk. RESULTS: A total of 105 infants with PPHN treated with iNO were included, among whom 26 died (26/105, 24.8%). The multivariate Cox regression analysis showed that no early response to iNO (HR=8.500, 95%CI: 3.024-23.887, P<0.001), 1-minute Apgar score ≤3 points (HR=10.094, 95%CI: 2.577-39.534, P=0.001), a low value of minimum PaO2/FiO2 within 12 hours after admission (HR=0.067, 95%CI: 0.009-0.481, P=0.007), and a low value of minimum pH within 12 hours after admission (HR=0.049, 95%CI: 0.004-0.545, P=0.014) were independent risk factors for death. The ROC curve analysis showed that the lowest PaO2/FiO2 value within 12 hours after admission had an area under the ROC curve of 0.783 in predicting death risk, with a sensitivity of 84.6% and a specificity of 73.4% at the cut-off value of 50, and the lowest pH value within 12 hours after admission had an area under the ROC curve of 0.746, with a sensitivity of 76.9% and a specificity of 65.8% at the cut-off value of 7.2. CONCLUSIONS: Infants with PPHN requiring iNO treatment tend to have a high mortality rate. No early response to iNO, 1-minute Apgar score ≤3 points, the lowest PaO2/FiO2 value <50 within 12 hours after admission, and the lowest pH value <7.2 within 12 hours after admission are the early risk factors for death in such infants. Monitoring and evaluation of the above indicators will help to identify high-risk infants in the early stage.


Assuntos
Hipertensão Pulmonar , Síndrome da Persistência do Padrão de Circulação Fetal , Administração por Inalação , Criança , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Lactente , Recém-Nascido , Óxido Nítrico , Síndrome da Persistência do Padrão de Circulação Fetal/tratamento farmacológico , Estudos Retrospectivos , Fatores de Risco
5.
J Mol Biol ; 432(19): 5390-5410, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32795535

RESUMO

Streptococcus pneumoniae (Spn) is an important Gram-positive human pathogen that causes millions of infections worldwide with an increasing occurrence of antibiotic resistance. Fe acquisition is a crucial virulence determinant in Spn; further, Spn relies on exogenous FeIII-siderophore scavenging to meet nutritional Fe needs. Recent studies suggest that the human catecholamine stress hormone, norepinephrine (NE), facilitates Fe acquisition in Spn under conditions of transferrin-mediated Fe starvation. Here we show that the solute binding lipoprotein PiuA from the piu Fe acquisition ABC transporter PiuBCDA, previously described as an Fe-hemin binding protein, binds tetradentate catechol FeIII complexes, including NE and the hydrolysis products of enterobactin. Two protein-derived ligands (H238, Y300) create a coordinately saturated FeIII complex, which parallel recent studies in the Gram-negative intestinal pathogen Campylobacter jejuni. Our in vitro studies using NMR spectroscopy and 54Fe LC-ICP-MS confirm the FeIII can move from transferrin to apo-PiuA in an NE-dependent manner. Structural analysis of PiuA FeIII-bis-catechol and GaIII-bis-catechol and GaIII-(NE)2 complexes by NMR spectroscopy reveals only localized structural perturbations in PiuA upon ligand binding, largely consistent with recent descriptions of other solute binding proteins of type II ABC transporters. We speculate that tetradentate FeIII complexes formed by mono- and bis-catechol species are important Fe sources in Gram-positive human pathogens, since PiuA functions in the same way as SstD from Staphylococcus aureus.


Assuntos
Catecóis/metabolismo , Compostos Férricos/metabolismo , Streptococcus pneumoniae/metabolismo , Sequência de Aminoácidos , Catecóis/química , Cristalografia por Raios X , Compostos Férricos/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Conformação Proteica , Streptococcus pneumoniae/química
6.
Cell Physiol Biochem ; 49(5): 2022-2034, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30244249

RESUMO

BACKGROUND/AIMS: Although a number of reports documented the important role of parkin in mitophagy, emerging evidence also indicated additional functions of parkin besides mitophagy. The present study was undertaken to investigate the role of parkin in the regulation of ERRα/eNOS pathway in endothelial cells (ECs). METHODS: Mouse aortic endothelial cells (MAECs) and cardiac muscle HL-1 cells were transfected with parkin plasmid or siRNA. ERRα inhibitor XCT-790, autophagy inhibitor 3-MA and Bafilomycin A1, and caspase inhibitor Z-VAD-FMK were used to block autophagy or apoptosis. Western blotting was performed to examine the protein levels. Flow cytometry was applied to determine the cell apoptosis and ROS production. Mitochondrial membrane potential was measured using JC-1 and TMRM. Immunoprecipitation was performed to confirm the parkin effect on ERRα ubiquitination. RESULTS: Overexpression of parkin resulted in a significant reduction of total-eNOS and p-eNOS in parallel with the downregulation of ERRα (a regulator of eNOS) protein and the enhancement of ERRα ubiquitination. To test the role of ERRα in regulating eNOS in this experimental setting, we treated ECs with ERRα inhibitor and found a decrement of total-eNOS and p-eNOS. On the contrary, overexpression of ERRα increased the levels of total-eNOS and p-eNOS. Meanwhile, parkin overexpression induced mitochondrial dysfunction and cell apoptosis in both ECs and HL-1 cells. Finally, we confirmed that the parkin effect on the regulation of eNOS was independent of the autophagy and apoptosis. CONCLUSION: These findings suggested that parkin overexpression downregulated eNOS possibly through the ubiquitination of ERRα in endothelial cells.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Receptores de Estrogênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Macrolídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Nitrilas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Receptor ERRalfa Relacionado ao Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA