Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(8): e202401093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38867371

RESUMO

Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.


Assuntos
Apiaceae , Cumarínicos , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Apiaceae/química , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Relação Estrutura-Atividade , Nitrilas/química
2.
Fitoterapia ; 175: 105945, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575091

RESUMO

Four previously undescribed isoprenoid flavonoids (2-5) were isolated from Sophora davidii, along with five known analogues. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and absolute configurations determined by theoretical calculations, including ECD and NMR calculation. The cytotoxic effects of the isolated compounds on human HT29 colon cancer cells were evaluated using the MTT assay, compound 1 exhibited cytotoxicity against human HT29 colon cancer cells with an IC50 value of 8.39 ± 0.09 µM. Studies conducted with compound 1 in HT29 cells demonstrated that it may induce apoptosis and autophagy in HT29 by promoting the phosphorylation of P38 MAPK and inhibiting the phosphorylation of Erk MAPK.


Assuntos
Antineoplásicos Fitogênicos , Apoptose , Autofagia , Flavonoides , Sophora , Humanos , Sophora/química , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células HT29 , Estrutura Molecular , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , China , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Terpenos/farmacologia , Terpenos/isolamento & purificação , Fosforilação
3.
Fitoterapia ; 175: 105970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653340

RESUMO

Eleven new highly oxygenated eremophilane-type sesquiterpenoids were isolated from the whole plant of Synotis solidaginea, including two pairs of C-8 S/R epimers. The structures of the new compounds were elucidated on the basis of detailed spectroscopic analysis and the absolute configurations of 1 and 9 were confirmed by single-crystal X-ray crystallography using Cu Kα radiation. All the isolates were tested for the inhibition of LPS-stimulated NO production in macrophage-like mouse monocytic leukemia RAW264.7 cells. Compound 1 exhibited weak inhibitory effects with an IC50 of 71.2 µM.


Assuntos
Óxido Nítrico , Compostos Fitoquímicos , Sesquiterpenos , Camundongos , Animais , Células RAW 264.7 , Estrutura Molecular , Óxido Nítrico/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , China , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/isolamento & purificação
4.
Phytochemistry ; 221: 114036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387724

RESUMO

Eight previously undescribed diterpenoids, along with eleven previously reported analogues, were obtained from the supercritical CO2 extracts of Torreya grandis aril. The structures of these compounds were elucidated based on HRESIMS, NMR, ECD, and single-crystal X-ray diffraction data. In the MTT assay, compound 18 exhibited significant inhibitory effects on two human colon cancer cell lines, HT-29 and HCT 116 cells, with IC50 values of 7.37 µM and 6.55 µM, respectively. It was found that compound 18 induced apoptosis and significantly inhibited the migration of HCT 116 colon cancer cells in a concentration-dependent manner.


Assuntos
Antineoplásicos , Neoplasias do Colo , Diterpenos , Taxaceae , Ácidos Tri-Iodobenzoicos , Humanos , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Taxaceae/química , Estrutura Molecular
5.
Fitoterapia ; 173: 105773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097020

RESUMO

Three previously undescribed compounds including a polyketide (1) and two lactams (2 and 3) were obtained from Tuber indicum. The structures of new findings were elucidated by HRESIMS, NMR as well as NMR and ECD calculations. Transcriptome analysis through RNA-seq revealed that compound 2 exhibits immunosuppressive activity. Lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were employed as a model to explore the effect of these compounds in immunosuppressive activity. The results showed that 2 could reduce the generation of inflammatory mediators including nitric oxide (NO), reactive oxygen species (ROS), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). Western blotting analysis demonstrated that 2 could suppressed the PI3K pathway by decreasing the levels of p-PI3K and p-Akt, while increasing the levels of p-PTEN. The anti-inflammatory activity of 2 was further confirmed using a zebrafish in vivo model.


Assuntos
Ascomicetos , NF-kappa B , Fosfatidilinositol 3-Quinases , Animais , Camundongos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peixe-Zebra/metabolismo , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos , Óxido Nítrico/metabolismo , Perfilação da Expressão Gênica , Células RAW 264.7
6.
Phytomedicine ; 120: 155052, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717310

RESUMO

BACKGROUND: Ulcerative colitis (UC) accounts for the untreatable illness nowadays. Bloody stools are the primary symptom of UC, and the first-line drugs used to treat UC are associated with several drawbacks and negative side effects. S. officinalis has long been used as a medicine to treat intestinal infections and bloody stools. However, what the precise molecular mechanism, the exact etiology, and the material basis of the disease remain unclear. PURPOSE: This work aimed to comprehensively explore pharmacological effects as well as molecular mechanisms underlying the active fraction of S. officinalis, and to produce a comprehensive and brand-new guideline map of its chemical base and mechanism of action. METHODS: First, different polarity S. officinalis extracts were orally administered to the DSS-induced UC model mice for the sake of investigating its active constituents. Using the UPLC-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) technique, the most active S. officinalis (S. officinalis ethyl acetate fraction, SOEA) extract was characterized. Subsequently, the effectiveness of its active fraction on UC was evaluated through phenotypic observation (such as weight loss, colon length, and stool characteristics), and histological examination of pathological injuries, mRNA and protein expression. Cell profile, cell-cell interactions and molecular mechanisms of SOEA in different cell types of the colon tissue from UC mice were described using single-cell RNA sequencing (scRNA-seq). As a final step, the molecular mechanisms were validated by appropriate molecular biological methods. RESULTS: For the first time, this study revealed the significant efficacy of SOEA in the treatment of UC. SOEA reduced DAI and body weight loss, recovered the colon length, and mitigated colonic pathological injuries along with mucosal barrier by promoting goblet cell proliferation. Following treatment with SOEA, inflammatory factors showed decreased mRNA and protein expression. SOEA restored the dynamic equilibrium of cell profile and cell-cell interactions in colon tissue. All of these results were attributed to the ability of SOEA to inhibit the PI3K-AKT/NF-κB/STATAT pathway. CONCLUSIONS: By integrating the chemical information of SOEA derived from UPLC-Q-Orbitrap-HRMS with single-cell transcriptomic data extracted from scRNA-seq, this study demonstrates that SOEA exerts the therapeutic effect through suppressing PI3K-AKT/NF-B/STAT3 pathway to improve clinical symptoms, inflammatory response, mucosal barrier, and intercellular interactions in UC, and effectively eliminates the interference of cellular heterogeneity.


Assuntos
Colite Ulcerativa , Sanguisorba , Animais , Camundongos , NF-kappa B , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Análise de Sequência de RNA
7.
Phytomedicine ; 120: 155031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666060

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common type of cancer that shows great morbidity and mortality rates. However, there are limited available drugs to treat HCC. AIM: The present work focused on discovering the potential anti-HCC compounds from traditional Chinese medicine (TCM) by employing high-throughput sequencing-based high-throughput screening (HTS2) together with the liver cancer pathway-associated gene signature. METHODS: HTS2 assay was adopted for identifying herbs. Protein-protein interaction (PPI) network analysis and computer-aided drug design (CADD) were used to identify key targets and screen the candidate natural products of herbs. Molecular docking, network pharmacology analysis, western blotting, immunofluorescent staining, subcellular fractionation experiment, dual-luciferase reporter gene assay, surface plasmon resonance (SPR) as well as nuclear magnetic resonance (NMR) were performed to validate the ability of compound binding with key target and inhibiting its function. Moreover, cell viability, colony-forming, cell cycle assay and animal experiments were performed to examine the inhibitory effect of compound on HCC. RESULTS: We examined the perturbation of 578 herb extracts on the expression of 84 genes from the liver cancer pathway, and identified the top 20 herbs significantly reverting the gene expression of this pathway. Signal transducer and activator of transcription 3  (STAT3)  was identified as one of the key targets of the liver cancer pathway by PPI network analysis. Then, by analyzing compounds from top 20 herbs utilizing CADD, we found ginsenoside F2 (GF2) binds to STAT3 with high affinity, which was further validated by the results from molecular docking, SPR and NMR. Additionally, our results showed that GF2 suppresses the phosphorylation of Y705 of STAT3, inhibits its nuclear translocation, decreases its transcriptional activity and inhibits the growth of HCC in vitro and in vivo. CONCLUSION: Based on this large-scale transcriptional study, a number of anti-HCC herbs were identified. GF2, a compound derived from TCM, was found to be a chemical basis of these herbs in treating HCC. The present work also discovered that GF2 is a new STAT3 inhibitor, which is able to suppress HCC. As such, GF2 represents a new potential anti-HCC therapeutic strategy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3 , Simulação de Acoplamento Molecular
8.
Phytochem Anal ; 34(8): 938-949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37483127

RESUMO

INTRODUCTION: Citri Sarcodactylis Fructus has the effects of relieving cough, removing phlegm, and reducing asthma, but little is known about the metabolic and distribution of its chemical constituents in vivo. Therefore, it is necessary to study the metabolism of Citri Sarcodactylis Fructus in vivo. OBJECTIVE: We aimed to (1) analyze the distribution of prototype compounds and metabolites of the chemical constituents of Citri Sarcodactylis Fructus in rat and (2) infer the metabolites and metabolic pathways of the chemical constituents. MATERIALS AND METHODS: A C18 column (3 × 100 mm, 2.6 µm) was used. The mobile phase was water containing 0.1% formic acid (eluent A) and acetonitrile containing 0.1% formic acid (eluent B) at a discharge rate of 0.3 mL/min. Mass spectra of biological samples were collected in electrospray ionization (ESI) positive ion mode in the m/z 100-1500 scan range. The obtained biological samples were then subjected to chemical analysis, including plasma, urine, feces, and heart, liver, spleen, lungs, kidneys, stomach, and small intestine tissues. Prototype compounds and metabolites were identified. RESULTS: In all, 40 prototype compounds and 78 metabolites, including 26 phase I metabolites and 52 phase II metabolites, were identified using UHPLC-Q/Orbitrap HRMS. Eight possible metabolic pathways (reduction, hydrolysis, dehydration, methylation, hydroxylation, sulfation, glucuronidation, and demethylation) were proposed. The prototype compounds were predominantly distributed in lung tissues. The metabolites were mainly distributed in plasma and kidney tissues. CONCLUSION: We systematically investigated the metabolites of Citri Sarcodactylis Fructus in vivo. We suggest metabolic pathways that might be relevant for further metabolic studies and screening of active ingredients of Citrus Sarcodactylis Fructus in vivo.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Formiatos , Espectrometria de Massas em Tandem
9.
J Asian Nat Prod Res ; 25(2): 147-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35582859

RESUMO

Amestolkins A (1) and B (2), two previously undescribed phthalides sharing the same planar structure of (1, 5-dihydroxyhexyl)-7-hydroxyisobenzofuran-1(3H)-one were isolated from Talaromyces amestolkiae. Their absolute configurations were elucidated by comprehensive analyses of spectroscopic evidences in high-resolution electrospray mass spectra (HRESIMS) and nuclear magnetic resonance (NMR) combined with electronic circular dichroism (ECD) and NMR calculations. 1 and 2 showed anti-neuroinflammatory activity by inhibiting the gene expressions of proinflammatory factors including C-C motif chemokine ligand 2 (CCL-2), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), as well as attenuating the excretion of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells at the concentration of 30 µM.


Assuntos
Talaromyces , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Talaromyces/química
10.
Front Microbiol ; 13: 999996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081795

RESUMO

Excessive inflammation causes chronic diseases and tissue damage. Although there has been drug treatment, its side effects are relatively large. Searching for effective anti-inflammatory drugs from natural products has become the focus of attention. First isolated from Trichoderma longibraciatum, trichodimerol is a natural product with TNF inhibition. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of trichodimerol. The results of nitric oxide (NO) detection, enzyme-linked immunosorbent assay (ELISA), and reactive oxygen species (ROS) showed that trichodimerol could reduce the production of NO, ROS, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Western blotting results showed that trichodimerol could inhibit the production of inflammatory mediators such as cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the protein expression of nuclear transcription factor-kappaB (NF-κB), p-IKK, p-IκB, Toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cysteinyl aspartate specific proteinase (Caspase)-1, and ASC, which indicated that trichodimerol may inhibit inflammation through the NF-κB and NLRP3 pathways. At the same time, molecular docking showed that trichodimerol can directly combine with the TLR4-MD2 complex. Hence, trichodimerol inhibits inflammation by obstructing the interaction between LPS and the TLR4-MD2 heterodimer and suppressing the downstream NF-κB and NLRP3 pathways.

11.
Phytochemistry ; 203: 113377, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988742

RESUMO

Cichorium intybus L. (Asteraceae), belonging to the tribe Cichorieae of the family Asteraceae, has a long history as an edible and medicinal food. Sesquiterpene lactones are commonly considered as its major active constituents. In the current study, five unreported sesquiterpene lactones, including one 12,8-guaianolide and four 12,6-guaianolides were isolated from C. intybus roots, as well as 16 known analogues. The planar structures and relative configurations of these compounds were elucidated by extensive spectroscopic analysis. The absolute configurations were determined by the time-dependent density functional theory (TDDFT)-based electronic circular dichroism (ECD) calculation method. Bioassay results showed that seven of the isolates exhibited remarkable NO production inhibitory activity in LPS-stimulated RAW264.7 macrophages, with IC50 values ranging from 1.83 to 38.81 µM. Some of them can significantly decrease the secretion of inflammatory cytokines (TNF-α and IL-6). Cytotoxicity assays demonstrated that intybusins B, as well as four known compounds, displayed obvious inhibitory activities against four human tumor cells, with IC50 values ranging from 9.01 to 27.07 µM.


Assuntos
Antineoplásicos , Asteraceae , Cichorium intybus , Sesquiterpenos , Anti-Inflamatórios/farmacologia , Asteraceae/química , Humanos , Interleucina-6 , Lactonas/química , Lactonas/farmacologia , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Fator de Necrose Tumoral alfa
12.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 23-33, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36017888

RESUMO

Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Aspártico/metabolismo , Doenças Neuroinflamatórias , Peptídeo Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Caspases/metabolismo , Microglia/metabolismo
13.
Bioorg Chem ; 124: 105810, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447407

RESUMO

Three previously undescribed polyketides [proliferatin A-C (1-3)] with anti-inflammatory activity were isolated from Fusarium proliferatum. 1-3 attenuated the production of inflammatory signal messengers including nitric oxide (NO), reactive oxygen species, proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), as well as the related proteins nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the potential anti-inflammatory mechanism of 1-3 involved in the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinases (MAPKs) signaling pathways. Experimental evaluation of the protein levels revealed that 1-3 can inhibit the phosphorylation of IκB kinase (IKK), the degradation of NF-κB Inhibitor-α (IκBα), the phosphorylation of nuclear factor-κB (NF-κB) and can reduce NF-κB transportation to the nucleus. Interestingly, 1-3 decreased the phosphorylation of MAPKs including p-p38, p-ERK, and p-JNK. Molecular docking models suggest that binding of 1-3 to TLR4-MD-2 complex may lead to inhibition of NF-κB and MAPK signaling pathways, which was confirmed in vitro by surface plasmon resonance (SPR) assays. 1-3 can thus constitute potential therapeutic candidates for the treatment of inflammation-associated diseases.


Assuntos
Lipopolissacarídeos , NF-kappa B , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Pharmacol ; 13: 881182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37124719

RESUMO

Background: Excessive inflammation results in severe tissue damage as well as serious acute or chronic disorders, and extensive research has focused on finding new anti-inflammatory hit compounds with safety and efficacy profiles from natural products. As promising therapeutic entities for the treatment of inflammation-related diseases, fusaproliferin and its analogs have attracted great interest. However, the underlying anti-inflammatory mechanism is still poorly understood and deserves to be further investigated. Methods: For the estimation of the anti-inflammatory activity of fusaproliferin (1) and its analogs (2-4) in vitro and in vivo, lipopolysaccharide (LPS)-induced RAW264.7 macrophages and zebrafish embryos were employed. Then, transcriptome analysis was applied to guide subsequent western blot analysis of critical proteins in related signaling pathways. Surface plasmon resonance assays (SPR) combined with molecular docking analyses were finally applied to evaluate the affinity interactions between 1-4 and TLR4 and provide a possible interpretation of the downregulation of related signaling pathways. Results: 1-4 significantly attenuated the production of inflammatory messengers, including nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), as well as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in LPS-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the ability of compound 1 to reverse LPS stimulation and the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPKs) signaling pathways contribute to the anti-inflammatory process. Experimental verification at the protein level revealed that 1 can inhibit the activation of inhibitor of NF-κB kinase (IKK), degradation of inhibitor of NF-κB (IκB), and phosphorylation of NF-κB and reduce nuclear translocation of NF-κB. 1 also decreased the phosphorylation of MAPKs, including p38, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). SPR assays and molecular docking results indicated that 1-4 exhibited affinity for the TLR4 protein with KD values of 23.5-29.3 µM. Conclusion: Fusaproliferin and its analogs can be hit compounds for the treatment of inflammation-associated diseases.

15.
Nat Prod Res ; 36(8): 2097-2104, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33205667

RESUMO

Two new phenolic glycosides 7R,8R-threo-4,7,9,9'-tetrahydroxy-3-methoxy-8-O-4'-neolignan-3'-O-(3''-α-L-arabinofuranosyl)-ß-D-glucopyranoside. (1), 4-(4'-hydroxyphenyl)-2-butanone-4''-O-(6-ß-D-xylosyl)-ß-D-glucopyranoside (2), along with two known related analogues 7R,8R-threo-4,7,9,9'-tetrahydroxy-3-methoxy-8-O-4'-neolignan-3'-O-ß-D-glucopyranoside (3), 4-(4'-hydroxyphenyl)-2-butanone-4'-O-ß-D-glucopyranoside (4) were obtained from the roots of Sanguisorba officinalis. Combined with acid hydrolysis derivatization, the absolute configurations of these new compounds were elucidated by comprehensive analyses of spectroscopic data including nuclear magnetic resonance (NMR), electrospray ionization high resolution mass (HRESIMS) as well as circular dichroism (CD). Compounds 1-4 exhibited anti-inflammatory properties in vitro by attenuating the production of inflammatory mediators, such as nitric oxide (NO) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).


Assuntos
Lignanas , Sanguisorba , Anti-Inflamatórios/química , Glicosídeos/química , Lignanas/química , Estrutura Molecular , Raízes de Plantas/química , Sanguisorba/química
16.
J Nat Prod ; 84(12): 3044-3054, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34846889

RESUMO

Overexpression of various pro-inflammatory factors in microglial cells tends to induce neurodegenerative diseases, for which there is no effective therapy available. Aureonitol (1) and seven analogues, including six previously undescribed [elatumenol A-F (2-4, 6-8, respectively)], along with two new orsellinic acid esters [elatumone A and B (9 and 10)], were isolated from Chaetomium elatum. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including high-resolution mass spectra and one- and two-dimensional NMR, and absolute configurations determined by the Mosher method, dimolybdenum tetraacetate-induced circular dichroism, and theoretical calculations including electronic circular dichroism and NMR. Metabolites 3, 4, 7, and 8 exhibited antineuroinflammatory activity by attenuating the production of inflammatory mediators, such as nitric oxide, interleukin-6, interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species. Western blot results indicated 8 decreases the level of inducible nitric oxide synthase and cyclooxygenase-2 and suppresses the expression of Toll-like receptor 4 and nuclear factor kappa-B (NF-κB) as well as the phosphorylation of the inhibitor of NF-κB and p38 mitogen-activated protein kinases in lipopolysaccharide-activated BV-2 microglial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Chaetomium/química , Furanos/farmacologia , Microglia/efeitos dos fármacos , Resorcinóis/farmacologia , Animais , Ésteres/química , Furanos/química , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/antagonistas & inibidores , Resorcinóis/química , Análise Espectral/métodos
17.
Front Oncol ; 11: 762023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660328

RESUMO

Transcriptional reprogramming contributes to the progression and recurrence of cancer. However, the poorly elucidated mechanisms of transcriptional reprogramming in tumors make the development of effective drugs difficult, and gene expression signature is helpful for connecting genetic information and pharmacologic treatment. So far, there are two gene-expression signature-based high-throughput drug discovery approaches: L1000, which measures the mRNA transcript abundance of 978 "landmark" genes, and high-throughput sequencing-based high-throughput screening (HTS2); they are suitable for anticancer drug discovery by targeting transcriptional reprogramming. L1000 uses ligation-mediated amplification and hybridization to Luminex beads and highlights gene expression changes by detecting bead colors and fluorescence intensity of phycoerythrin signal. HTS2 takes advantage of RNA-mediated oligonucleotide annealing, selection, and ligation, high throughput sequencing, to quantify gene expression changes by directly measuring gene sequences. This article summarizes technological principles and applications of L1000 and HTS2, and discusses their advantages and limitations in anticancer drug discovery.

18.
Chem Biodivers ; 18(10): e2100403, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34370372

RESUMO

Three previously undescribed chlorophenyl glycosides, (2,4,6-trichloro-3-hydroxy-5-methoxyphenyl)methyl ß-D-glucopyranoside (1), (2,4-dichloro-3,5-dimethoxyphenyl)methyl 6-O-ß-D-glucopyranosyl-ß-D-glucopyranoside (2) and 4-chloro-3-methoxy-5-methylphenyl 6-O-(6-deoxy-ß-L-mannopyranosyl)-ß-D-glucopyranoside (3) were obtained from Lilium regale. The absolute configurations of these new finds were elucidated by comprehensive analyses of spectroscopic data combined with acid hydrolysis derivatization. (2,4-dichloro-3,5-dimethoxyphenyl)methyl 6-O-ß-D-glucopyranosyl-ß-D-glucopyranoside (2) can inhibit the proliferation of lung carcinoma A549 cells with an IC50 value of 29 µΜ.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glicosídeos/farmacologia , Lilium/química , Raízes de Plantas/química , Células A549 , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Conformação Molecular , Células Tumorais Cultivadas
19.
Fitoterapia ; 143: 104586, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32247772

RESUMO

Two new dihydrophenanthrofurans (1 and 2) and two new bisbibenzyl derivatives (3 and 4) were isolated from the traditional Chinese medicinal plant Dendrobium nobile, along with four known compounds (5-8). The absolute configurations of compounds 1 and 4 were elucidated through extensive NMR and ECD spectroscopic analyses. New compounds showed no antimicrobial activity against four gram-positive bacterial strains and four gram-negative bacteria at the concentration of 1 mg/mL, but displayed significant cytotoxic activity against HepG2 human hepatic cell line with the IC50 values ranging from 1.25 µM to 19.47 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dendrobium/química , Furanos/farmacologia , Fenantrenos/farmacologia , Caules de Planta/química , Antineoplásicos Fitogênicos/isolamento & purificação , Furanos/isolamento & purificação , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Células Hep G2 , Humanos , Estrutura Molecular , Fenantrenos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química
20.
Fitoterapia ; 142: 104497, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32058054

RESUMO

Five previously undescribed compounds, including two dendrobine-type alkaloids (1 and 2), three bibenzyl derivatives (3-5), along with six known compounds were isolated from orchids Dendrobium findlayanum. The structures and absolute configurations of the undescribed compounds were elucidated on the basis of HR-ESIMS, NMR spectroscopy, optical rotation value, as well as electronic circular dichroism (ECD) calculations. The cytotoxic effects of the isolated compounds on three human tumour cell lines (A172, SHSY5Y, and Hela) were evaluated by the MTT assay. Compound 6 showed excellent inhibitory activities against three human tumour cell lines with IC50 ranging from 1.65 µM to 3.77 µM. All these compounds were assessed for their activity of promoting the gastrointestinal motility of zebrafish treated with Nile red. Compound 6 have excellent activity to promote the gastrointestinal motility of zebrafish at the concentration of 0.3 µM.


Assuntos
Alcaloides/química , Bibenzilas/química , Dendrobium/química , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bibenzilas/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fármacos Gastrointestinais/química , Fármacos Gastrointestinais/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA