Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(6): e1011218, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289843

RESUMO

Synthetic lethality (SL) occurs when mutations in two genes together lead to cell or organism death, while a single mutation in either gene does not have a significant impact. This concept can also be extended to three or more genes for SL. Computational and experimental methods have been developed to predict and verify SL gene pairs, especially for yeast and Escherichia coli. However, there is currently a lack of a specialized platform to collect microbial SL gene pairs. Therefore, we designed a synthetic interaction database for microbial genetics that collects 13,313 SL and 2,994 Synthetic Rescue (SR) gene pairs that are reported in the literature, as well as 86,981 putative SL pairs got through homologous transfer method in 281 bacterial genomes. Our database website provides multiple functions such as search, browse, visualization, and Blast. Based on the SL interaction data in the S. cerevisiae, we review the issue of duplications' essentiality and observed that the duplicated genes and singletons have a similar ratio of being essential when we consider both individual and SL. The Microbial Synthetic Lethal and Rescue Database (Mslar) is expected to be a useful reference resource for researchers interested in the SL and SR genes of microorganisms. Mslar is open freely to everyone and available on the web at http://guolab.whu.edu.cn/Mslar/.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Mutações Sintéticas Letais , Mutação , Genoma Bacteriano/genética , Bases de Dados Genéticas , Neoplasias/genética
2.
Database (Oxford) ; 20202020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306800

RESUMO

Essential genes are key elements for organisms to maintain their living. Building databases that store essential genes in the form of homologous clusters, rather than storing them as a singleton, can provide more enlightening information such as the general essentiality of homologous genes in multiple organisms. In 2013, the first database to store prokaryotic essential genes in clusters, CEG (Clusters of Essential Genes), was constructed. Afterward, the amount of available data for essential genes increased by a factor >3 since the last revision. Herein, we updated CEG to version 2, including more prokaryotic essential genes (from 16 gene datasets to 29 gene datasets) and newly added eukaryotic essential genes (nine species), specifically the human essential genes of 12 cancer cell lines. For prokaryotes, information associated with drug targets, such as protein structure, ligand-protein interaction, virulence factor and matched drugs, is also provided. Finally, we provided the service of essential gene prediction for both prokaryotes and eukaryotes. We hope our updated database will benefit more researchers in drug targets and evolutionary genomics. Database URL: http://cefg.uestc.cn/ceg.


Assuntos
Eucariotos , Genes Essenciais , Bases de Dados Factuais , Genes Essenciais/genética , Genômica , Humanos , Proteínas
3.
Bioinformatics ; 33(12): 1758-1764, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158612

RESUMO

MOTIVATION: Previously constructed classifiers in predicting eukaryotic essential genes integrated a variety of features including experimental ones. If we can obtain satisfactory prediction using only nucleotide (sequence) information, it would be more promising. Three groups recently identified essential genes in human cancer cell lines using wet experiments and it provided wonderful opportunity to accomplish our idea. Here we improved the Z curve method into the λ-interval form to denote nucleotide composition and association information and used it to construct the SVM classifying model. RESULTS: Our model accurately predicted human gene essentiality with an AUC higher than 0.88 both for 5-fold cross-validation and jackknife tests. These results demonstrated that the essentiality of human genes could be reliably reflected by only sequence information. We re-predicted the negative dataset by our Pheg server and 118 genes were additionally predicted as essential. Among them, 20 were found to be homologues in mouse essential genes, indicating that some of the 118 genes were indeed essential, however previous experiments overlooked them. As the first available server, Pheg could predict essentiality for anonymous gene sequences of human. It is also hoped the λ-interval Z curve method could be effectively extended to classification issues of other DNA elements. AVAILABILITY AND IMPLEMENTATION: http://cefg.uestc.edu.cn/Pheg. CONTACT: fbguo@uestc.edu.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Composição de Bases , Genes Essenciais , Análise de Sequência de DNA/métodos , Software , Animais , Eucariotos/genética , Humanos , Camundongos , Modelos Genéticos
4.
Nucleic Acids Res ; 44(D1): D1127-32, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26503249

RESUMO

The BDB database (http://immunet.cn/bdb) is an update of the MimoDB database, which was previously described in the 2012 Nucleic Acids Research Database issue. The rebranded name BDB is short for Biopanning Data Bank, which aims to be a portal for biopanning results of the combinatorial peptide library. Last updated in July 2015, BDB contains 2904 sets of biopanning data collected from 1322 peer-reviewed papers. It contains 25,786 peptide sequences, 1704 targets, 492 known templates, 447 peptide libraries and 310 crystal structures of target-template or target-peptide complexes. All data stored in BDB were revisited, and information on peptide affinity, measurement method and procedures was added for 2298 peptides from 411 sets of biopanning data from 246 published papers. In addition, a more professional and user-friendly web interface was implemented, a more detailed help system was designed, and a new on-the-fly data visualization tool and a series of tools for data analysis were integrated. With these new data and tools made available, we expect that the BDB database would become a major resource for scholars using phage display, with improved utility for biopanning and related scientific communities.


Assuntos
Bases de Dados de Compostos Químicos , Biblioteca de Peptídeos , Peptídeos/química , Técnicas de Visualização da Superfície Celular , Internet , Software
5.
Nucleic Acids Res ; 40(Database issue): D271-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22053087

RESUMO

Mimotopes are peptides with affinities to given targets. They are readily obtained through biopanning against combinatorial peptide libraries constructed by phage display and other display technologies such as mRNA display, ribosome display, bacterial display and yeast display. Mimotopes have been used to infer the protein interaction sites and networks; they are also ideal candidates for developing new diagnostics, therapeutics and vaccines. However, such valuable peptides are not collected in the central data resources such as UniProt and NCBI GenPept due to their 'unnatural' short sequences. The MimoDB database is an information portal to biopanning results of random libraries. In version 2.0, it has 15,633 peptides collected from 849 papers and grouped into 1818 sets. Besides the core data on panning experiments and their results, broad background information on target, template, library and structure is included. An accompanied benchmark has also been compiled for bioinformaticians to develop and evaluate their new models, algorithms and programs. In addition, the MimoDB database provides tools for simple and advanced searches, structure visualization, BLAST and alignment view on the fly. The experimental biologists can easily use the database as a virtual control to exclude possible target-unrelated peptides. The MimoDB database is freely available at http://immunet.cn/mimodb.


Assuntos
Bases de Dados de Proteínas , Peptídeos/química , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Análise de Sequência de Proteína , Software , Interface Usuário-Computador
6.
J Biomed Biotechnol ; 2010: 101932, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20339521

RESUMO

As epitope mimics, mimotopes have been widely utilized in the study of epitope prediction and the development of new diagnostics, therapeutics, and vaccines. Screening the random peptide libraries constructed with phage display or any other surface display technologies provides an efficient and convenient approach to acquire mimotopes. However, target-unrelated peptides creep into mimotopes from time to time through binding to contaminants or other components of the screening system. In this study, we present SAROTUP, a free web tool for scanning, reporting and excluding possible target-unrelated peptides from real mimotopes. Preliminary tests show that SAROTUP is efficient and capable of improving the accuracy of mimotope-based epitope mapping. It is also helpful for the development of mimotope-based diagnostics, therapeutics, and vaccines.


Assuntos
Biologia Computacional/métodos , Mapeamento de Epitopos/métodos , Peptídeos/química , Análise de Sequência de Proteína/métodos , Software , Bases de Dados de Proteínas , Humanos , Internet , Modelos Estatísticos , Biblioteca de Peptídeos , Peptídeos/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA