Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874979

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.

2.
Cell Rep Med ; 4(11): 101248, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865092

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death. Hallmarks include desmoplasia with variable extracellular matrix (ECM) architecture and a complex microenvironment with spatially defined tumor, stromal, and immune populations. Nevertheless, the role of desmoplastic spatial organization in patient/tumor variability remains underexplored, which we elucidate using two technologies. First, we quantify ECM patterning in 437 patients, revealing architectures associated with disease-free and overall survival. Second, we spatially profile the cellular milieu of 78 specimens using codetection by indexing, identifying an axis of pro-inflammatory cell interactions predictive of poorer outcomes. We discover that clinical characteristics, including neoadjuvant chemotherapy status, tumor stage, and ECM architecture, correlate with differential stromal-immune organization, including fibroblast subtypes with distinct niches. Lastly, we define unified signatures that predict survival with areas under the receiver operating characteristic curve (AUCs) of 0.872-0.903, differentiating survivorship by 655 days. Overall, our findings establish matrix ultrastructural and cellular organizations of fibrosis linked to poorer outcomes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Matriz Extracelular/patologia , Microambiente Tumoral
3.
J Biomed Mater Res A ; 111(1): 15-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053984

RESUMO

Thermogelling hydrogels based on poly(N-isopropyl acrylamide) (p[NiPAAm]) and crosslinked with a peptide-bearing macromer poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) were fabricated to assess the role of hydrogel charge and lower critical solution temperature (LCST) over time in influencing cellular infiltration and tissue integration in an ex vivo cartilage explant model over 21 days. The p(NiPAAm)-based thermogelling polymer was synthesized to possess 0, 5, and 10 mol% dimethyl-γ-butyrolactone acrylate (DBA) to raise the LCST over time as the lactone rings hydrolyzed. Further, three peptides were designed to impart charge into the hydrogels via conjugation to the PdBT crosslinker. The positively, neutrally, and negatively charged peptides K4 (+), zwitterionic K2E2 (0), and E4 (-), respectively, were conjugated to the modular PdBT crosslinker and the hydrogels were evaluated for their thermogelation behavior in vitro before injection into the cartilage explant models. Samples were collected at days 0 and 21, and tissue integration and cellular infiltration were assessed via mechanical pushout testing and histology. Negatively charged hydrogels whose LCST changed over time (10 mol% DBA) were demonstrated to promote the greatest tissue integration when compared to the positive and neutral gels of the same thermogelling polymer formulation due to increased transport and diffusion across the hydrogel-tissue interface. Indeed, the negatively charged thermogelling polymer groups containing 5 and 10 mol% DBA demonstrated cellular infiltration and cartilage-like matrix deposition via histology. This study demonstrates the important role that material physicochemical properties play in dictating cell and tissue behavior and can inform future cartilage tissue engineering strategies.


Assuntos
Cartilagem , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Temperatura , Engenharia Tecidual , Polietilenoglicóis/química , Polímeros/química , Peptídeos/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-36345216

RESUMO

Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.

5.
J Transl Med ; 20(1): 274, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715816

RESUMO

BACKGROUND: Radiation-induced skin injury is a well-known risk factor for impaired wound healing. Over time, the deleterious effects of radiation on skin produce a fibrotic, hypovascular dermis poorly suited to wound healing. Despite increasing understanding of the underlying pathophysiology, therapeutic options remain elusive. Deferoxamine (DFO), an iron-chelating drug, has been shown in prior murine studies to ameliorate radiation-induced skin injury as well as improve wound healing outcomes in various pathologic conditions when administered transdermally. In this preclinical study, we evaluated the effects of deferoxamine on wound healing outcomes in chronically irradiated murine skin. METHODS: Wild-type mice received 30 Gy of irradiation to their dorsal skin and were left to develop chronic fibrosis. Stented excisional wounds were created on their dorsal skin. Wound healing outcomes were compared across 4 experimental conditions: DFO patch treatment, vehicle-only patch treatment, untreated irradiated wound, and untreated nonirradiated wounds. Gross closure rate, wound perfusion, scar elasticity, histology, and nitric oxide assays were compared across the conditions. RESULTS: Relative to vehicle and untreated irradiated wounds, DFO accelerated wound closure and reduced the frequency of healing failure in irradiated wounds. DFO augmented wound perfusion throughout healing and upregulated angiogenesis to levels observed in nonirradiated wounds. Histology revealed DFO increased wound thickness, collagen density, and improved collagen fiber organization to more closely resemble nonirradiated wounds, likely contributing to the observed improved scar elasticity. Lastly, DFO upregulated inducible nitric oxide synthase and increased nitric oxide production in early healing wounds. CONCLUSION: Deferoxamine treatment presents a potential therapeutic avenue through which to target impaired wound healing in patients following radiotherapy.


Assuntos
Desferroxamina , Lesões por Radiação , Animais , Cicatriz/patologia , Colágeno/farmacologia , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Humanos , Camundongos , Óxido Nítrico , Pele/patologia , Cicatrização
6.
Acta Biomater ; 128: 120-129, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930575

RESUMO

Osteochondral defects present a unique clinical challenge due to their combination of phenotypically distinct cartilage and bone, which require specific, stratified biochemical cues for tissue regeneration. Furthermore, the articular cartilage exhibits significantly worse regeneration than bone due to its largely acellular and avascular nature, prompting significant demand for regenerative therapies. To address these clinical challenges, we have developed a bilayered, modular hydrogel system that enables the click functionalization of cartilage- and bone-specific biochemical cues to each layer. In this system, the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) was click conjugated with either a cartilage- or bone-specific peptide sequence of interest, and then mixed with a suspension of thermoresponsive polymer and mesenchymal stem cells (MSCs) to generate tissue-specific, cell-encapsulated hydrogel layers targeting the cartilage or bone. We implanted bilayered hydrogels in rabbit femoral condyle defects and investigated the effects of tissue-specific peptide presentation and cell encapsulation on osteochondral tissue repair. After 12 weeks implantation, hydrogels with a chondrogenic peptide sequence produced higher histological measures of overall defect filling, cartilage surface regularity, glycosaminoglycan (GAG)/cell content of neocartilage and adjacent cartilage, and bone filling and bonding compared to non-chondrogenic hydrogels. Furthermore, MSC encapsulation promoted greater histological measures of overall defect filling, cartilage thickness, GAG/cell content of neocartilage, and bone filling. Our results establish the utility of this click functionalized hydrogel system for in vivo repair of the osteochondral unit. STATEMENT OF SIGNIFICANCE: Osteochondral repair requires mimicry of both cartilage- and bone-specific biochemical cues, which are highly distinct. While traditional constructs for osteochondral repair have mimicked gross compositional differences between the cartilage and bone in mineral content, mechanical properties, proteins, or cell types, few constructs have recapitulated the specific biochemical cues responsible for the differential development of cartilage and bone. In this study, click biofunctionalized, bilayered hydrogels produced stratified presentation of developmentally inspired peptide sequences for chondrogenesis and osteogenesis. This work represents, to the authors' knowledge, the first application of bioconjugation chemistry for the simultaneous repair of bone and cartilage tissue. The conjugation of tissue-specific peptide sequences successfully promoted development of both cartilage and bone tissues in vivo.


Assuntos
Cartilagem Articular , Hidrogéis , Animais , Condrogênese , Peptídeos , Coelhos , Engenharia Tecidual
7.
Biotechnol Bioeng ; 118(8): 2958-2966, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913514

RESUMO

This study investigated the chondrogenic activity of encapsulated mesenchymal stem cells (MSCs) and articular chondrocytes (ACs) and its impact on the mechanical properties of injectable poly(N-isopropylacrylamide)-based dual-network hydrogels loaded with poly( l -lysine) (PLL). To this effect, an ex vivo study model was employed to assess the behavior of the injected hydrogels-specifically, their surface stiffness and integration strength with the surrounding cartilage. The highest chondrogenic activity was observed from AC-encapsulated hydrogels, while the effect of PLL on MSC chondrogenesis was not apparent from biochemical analyses. Mechanical testing showed that there were no significant differences in either surface stiffness or integration strength among the different study groups. Altogether, the results suggest that the ex vivo model can allow further understanding of the relationship between biochemical changes within the hydrogel and their impact on the hydrogel's mechanical properties.


Assuntos
Cartilagem Articular/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Animais , Cartilagem Articular/citologia , Condrócitos/citologia , Técnicas de Cocultura , Células-Tronco Mesenquimais/citologia , Coelhos
8.
J Control Release ; 328: 710-721, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010336

RESUMO

This work investigated the effect of poly(l-lysine) (PLL) molecular weight and concentration on chondrogenesis of cocultures of mesenchymal stem cells (MSCs) and articular chondrocytes (ACs) in PLL-loaded hydrogels. An injectable dual-network hydrogel composed of a poly(N-isopropylacrylamide)-based synthetic thermogelling macromer and a chondroitin sulfate-based biological network was leveraged as a model to deliver PLL and encapsulate the two cell populations. Incorporation of PLL into the hydrogel did not affect the hydrogel's swelling properties and degradation characteristics, nor the viability of encapsulated cells. Coculture groups demonstrated higher type II collagen expression compared to the MSC monoculture group. Expression of hypertrophic phenotype was also limited in the coculture groups. Histological analysis indicated that the ratio of MSCs to ACs was an accurate predictor of the degree of long-term chondrogenesis, while the presence of PLL was shown to have a more substantial short-term effect. Altogether, this study demonstrates that coculturing MSCs with ACs can greatly enhance the chondrogenicity of the overall cell population and offers a platform to further elucidate the short- and long-term effect of polycationic factors on the chondrogenesis of MSC and AC cocultures.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Condrócitos , Condrogênese , Técnicas de Cocultura , Hidrogéis , Polilisina
9.
Tissue Eng Part C Methods ; 26(11): 554-564, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050806

RESUMO

Osteochondral tissue repair represents a common clinical need, with multiple approaches in tissue engineering and regenerative medicine being investigated for the repair of defects of articular cartilage and subchondral bone. A full thickness rabbit femoral condyle defect is a clinically relevant model of an articulating and load bearing joint surface for the investigation of osteochondral tissue repair by various cell-, biomolecule-, and biomaterial-based implants. In this protocol, we describe the methodology and 1.5- to 2-h surgical procedure for the generation of a reproducible, full thickness defect for construct implantation in the rabbit medial femoral condyle. Furthermore, we describe a step-by-step procedure for osteochondral tissue collection and the assessment of tissue formation using standardized histological, radiological, mechanical, and biochemical analytical techniques. This protocol illustrates the critical steps for reproducibility and minimally invasive surgery as well as applications to evaluate the efficacy of cartilage and bone tissue engineering implants, with emphasis on the usage of histological and radiological measures of tissue growth. Impact statement Although multiple surgical techniques have been developed for the treatment of osteochondral defects, repairing the tissues to their original state remains an unmet need. Such limitations have thus prompted the development of various constructs for osteochondral tissue regeneration. An in vivo model that is both clinically relevant and economically practical is necessary to evaluate the efficacy of different tissue engineered constructs. In this article, we present a full thickness rabbit femoral condyle defect model and describe the analytical techniques to assess the regeneration of osteochondral tissue.


Assuntos
Condrogênese , Fêmur/patologia , Fêmur/fisiopatologia , Osteogênese , Regeneração , Animais , Fenômenos Biomecânicos , Condrogênese/genética , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Regulação da Expressão Gênica , Osteogênese/genética , Coelhos , Regeneração/genética , Cicatrização/genética , Microtomografia por Raio-X
10.
J Biomed Mater Res A ; 108(3): 684-693, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755226

RESUMO

Osteochondral repair requires the induction of both articular cartilage and subchondral bone development, necessitating the presentation of multiple tissue-specific cues for these highly distinct tissues. To provide a singular hydrogel system for the repair of either tissue type, we have developed biofunctionalized, mesenchymal stem cell-laden hydrogels that can present in situ biochemical cues for either chondrogenesis or osteogenesis by simple click modification of a crosslinker, poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT). After modifying PdBT with either cartilage-specific biomolecules (N-cadherin peptide, chondroitin sulfate) or bone-specific biomolecules (bone marrow homing peptide 1, glycine-histidine-lysine peptide), the biofunctionalized, PdBT-crosslinked hydrogels can selectively promote the desired bone- or cartilage-like matrix synthesis and tissue-specific gene expression, with effects dependent on both biomolecule selection and concentration. Our findings establish the versatility of this click functionalized hydrogel system as well as its ability to promote in vitro development of osteochondral tissue phenotypes.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual , Animais , Regeneração Óssea , Cartilagem/fisiologia , Células Cultivadas , Química Click , Células-Tronco Mesenquimais/citologia , Coelhos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA