Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860522

RESUMO

The importance of protein kinase B (AKT) in tumorigenesis and development is well established, but its potential regulation of metabolic reprogramming via phosphorylation of the hexokinase (HK) isozymes remains unclear. There are two HK family members (HK1/2) and three AKT family members (AKT1/2/3), with varied distribution of AKTs exhibiting distinct functions in different tissues and cell types. Although AKT is known to phosphorylate HK2 at threonine 473, AKT-mediated phosphorylation of HK1 has not been reported. We examined direct binding and phosphorylation of HK1/2 by AKT1 and identified the phosphorylation modification sites using coimmunoprecipitation, glutathione pull-down, western blotting, and in vitro kinase assays. Regulation of HK activity through phosphorylation by AKT1 was also examined. Uptake of 2-[1,2-3H]-deoxyglucose and production of lactate were investigated to determine whether AKT1 regulates glucose metabolism by phosphorylating HK1/2. Functional assays, immunohistochemistry, and tumor experiments in mice were performed to investigate whether AKT1-mediated regulation of tumor development is dependent on its kinase activity and/or the involvement of HK1/2. AKT interacted with and phosphorylated HK1 and HK2. Serine phosphorylation significantly increased AKT kinase activity, thereby enhancing glycolysis. Mechanistically, the phosphorylation of HK1 at serine 178 (S178) by AKT significantly decreased the Km and enhanced the Vmax by interfering with the formation of HK1 dimers. Mutations in the AKT phosphorylation sites of HK1 or HK2 significantly abrogated the stimulatory characteristics of AKT on glycolysis, tumorigenesis, and cell migration, invasion, proliferation, and metastasis. HK1-S178 phosphorylation levels were significantly correlated with the occurrence and metastasis of different types of clinical tumors. We conclude that AKT not only regulates tumor glucose metabolism by directly phosphorylating HK1 and HK2, but also plays important roles in tumor progression, proliferation, and migration.

2.
Sci Rep ; 14(1): 5228, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433277

RESUMO

BAZ2A, an epigenetic regulatory factor that affects ribosomal RNA transcription, has been shown to be highly expressed in several cancers and promotes tumor cell migration. This study explored the expression and mechanism of BAZ2A in tumorigenesis at the pan-cancer level. The Cancer Genome Atlas, Gene Expression Omnibus databases and TIMER2.0, cBioPortal and other tools were used to analyze the level of expression of BAZ2A in various tumor tissues and to examine the relationship between BAZ2A and survival, prognosis, mutation and immune invasion. In vitro experiments were performed to assess the function of BAZ2A in cancer cells. Using combined transcriptome and proteome analysis, we examined the possible mechanism of BAZ2A in tumors. BAZ2A exhibited high expression levels in multiple tumor tissues and displayed a significant association with cancer patient prognosis. The main type of BAZ2A genetic variation in cancer is gene mutation. Downregulation of BAZ2A inhibited proliferation, migration, and invasion and promoted apoptosis in LM6 liver cancer cell. The mechanism of BAZ2A in cancer development may involve lipid metabolism. These results help expand our understanding of BAZ2A in tumorigenesis and development and suggest BAZ2A may serve as a prognostic and diagnostic factor in several cancers.


Assuntos
Neoplasias Hepáticas , Multiômica , Humanos , Prognóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Carcinogênese , Transformação Celular Neoplásica , Proteínas que Contêm Bromodomínio , Proteínas Cromossômicas não Histona
3.
Sci Transl Med ; 15(717): eadd2712, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820006

RESUMO

Cancer immunotherapy has reshaped the landscape of cancer treatment. However, its efficacy is still limited by tumor immunosuppression associated with the excessive production of lactate by cancer cells. Although extensive efforts have been made to reduce lactate concentrations through inhibition of lactate dehydrogenase, such inhibitors disrupt the metabolism of healthy cells, causing severe nonspecific toxicity. We report herein a nanocapsule enzyme therapeutic based on lactate oxidase, which reduces lactate concentrations and releases immunostimulatory hydrogen peroxide, averting tumor immunosuppression and improving the efficacy of immune checkpoint blockade treatment. As demonstrated in a murine melanoma model and a humanized mouse model of triple-negative breast cancer, this enzyme therapeutic affords an effective tool toward more effective cancer immunotherapy.


Assuntos
Melanoma , Nanocápsulas , Animais , Camundongos , Linfócitos T , Imunoterapia , Melanoma/terapia , Lactatos , Microambiente Tumoral
4.
ACS Nano ; 16(9): 13919-13932, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36082976

RESUMO

The triple-negative breast cancer (TNBC) microenvironment makes a feature of aberrant vasculature, high interstitial pressure, and compact extracellular matrix, which combine to reduce the delivery and penetration of therapeutic agents, bringing about incomplete elimination of cancer cells. Herein, employing the tumor penetration strategy of size-shrinkage combined with ligand modification, we constructed a photothermal nanocluster for cascaded deep penetration in tumor parenchyma and efficient eradication of TNBC cells. In our approach, the photothermal agent indocyanine green (ICG) is laded in human serum albumin (HSA), which is cross-linked by a thermally labile azo linker (VA057) and then further modified with a tumor homing/penetrating tLyP-1 peptide (HP), resulting in a TNBC-targeting photothermal-responsive size-switchable albumin nanocluster (ICG@HSA-Azo-HP). Aided by the enhanced permeability and retention effect and guidance of HP, the ca. 149 nm nanoclusters selectively accumulate in the tumor site and then, upon mild irradiation with the 808 nm laser, disintegrate into 11 nm albumin fractions that possess enhanced intratumoral diffusion ability. Meanwhile, HP initiates the CendR pathway among the nutrient-deficient tumor cells and facilitates the transcellular delivery of the nanocluster and its disintegrated fractions for subsequent therapy. By employing this size-shrinkage and peptide-initiated transcytosis strategy, ICG@HSA-Azo-HP possesses excellent penetration capabilities and shows extensive penetration depth in three-dimensional multicellular tumor spheroids after irradiation. Moreover, with a superior photothermal conversion effect, the tumor-penetrating nanocluster can implement effective photothermal therapy throughout the tumor tissue under a second robust irradiation. Both in vivo orthotopic and ectopic TNBC therapy confirmed the efficient tumor inhibition of ICG@HSA-Azo-HP after dual-stage irradiation. The synergistic penetration strategy of on-demanded size-shrinkage and ligand guidance accompanied by clinically feasible NIR irradiation provides a promising approach for deep-penetrating TNBC therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Albuminas , Animais , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida/métodos , Verde de Indocianina/farmacologia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Fototerapia/métodos , Terapia Fototérmica , Albumina Sérica Humana , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
5.
Nat Biomed Eng ; 6(1): 19-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725505

RESUMO

The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4+ T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Antígenos de Neoplasias , Células Dendríticas , Camundongos , Moléculas com Motivos Associados a Patógenos , Microambiente Tumoral
6.
Elife ; 102021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34939923

RESUMO

Hematopoietic stem cells (HSCs) must ensure adequate blood cell production following distinct external stressors. A comprehensive understanding of in vivo heterogeneity and specificity of HSC responses to external stimuli is currently lacking. We performed single-cell RNA sequencing (scRNA-Seq) on functionally validated mouse HSCs and LSK (Lin-, c-Kit+, Sca1+) progenitors after in vivo pharmacological perturbation of niche signals interferon, granulocyte colony-stimulating factor (G-CSF), and prostaglandin. We identified six HSC states that are characterized by enrichment but not exclusive expression of marker genes. External signals induced rapid transitions between HSC states but transcriptional response varied both between external stimulants and within the HSC population for a given perturbation. In contrast to LSK progenitors, HSCs were characterized by a greater link between molecular signatures at baseline and in response to external stressors. Chromatin analysis of unperturbed HSCs and LSKs by scATAC-Seq suggested some HSC-specific, cell intrinsic predispositions to niche signals. We compiled a comprehensive resource of HSC- and LSK progenitor-specific chromatin and transcriptional features that represent determinants of signal receptiveness and regenerative potential during stress hematopoiesis.


Most organs in the human body are maintained by a type of immature cells known as adult stem cells, which ensure a constant supply of new, mature cells. Adult stem cells monitor their environment through external signalling molecules and replace damaged cells as needed. Stem cell therapy takes advantage of the regenerative ability of immature stem cells and can be helpful for conditions such as blood diseases, autoimmune diseases, neurodegeneration and cancer. For example, hematopoietic stem-cell transplantation is a treatment for some types of cancer and blood disorders, in which stem cells are harvested from the blood or bone marrow and reintroduced into the body, where they can develop into all types of blood cells, including white blood cells, red blood cells and platelets. Hematopoietic stem-cell transplants have been in use for over 30 years, but they remain a highly risky procedure. One of the challenges is that outcomes can vary between patients and many of the factors that can influence the 'regenerative' potential of hematopoietic stem cells, such as external signalling molecules, are not well understood. To fill this gap, Fast et al. analysed which genes are turned on and off in hematopoietic stem cells in response to several external signalling molecules. To do so, three signalling pathways in mice were altered by injecting them with different chemicals. After two hours, the hematopoietic stem cells were purified and the gene expression for each cell was analysed. This revealed that the types of genes and the strength at which they were affected by each chemical was unique. Moreover, hematopoietic stem cells responded rapidly to external signals, with substantial differences in gene expression between individual groups of cells. Contrary to more specialised cells, the external signalling genes in some hematopoietic stem cells were already activated without being injected with external signalling molecules. This suggest that low levels of external signalling molecules released from their microenvironment may prepare stem cells to better respond to future stress or injuries. These results help to better understand stem cells and to evaluate how the signalling state of hematopoietic stem cells affects regeneration, and ultimately improve hematopoietic stem cell transplantation for patients.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Linhagem da Célula , Feminino , Fator Estimulador de Colônias de Granulócitos/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interferons/efeitos dos fármacos , Masculino , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Prostaglandinas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119457, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33485241

RESUMO

The unbalanced metabolism of sulfur dioxide can cause various diseases, such as neurological disorders and lung cancer. Until now, some researches revealed that the normal function of lysosomes would be disrupted by its abnormal viscosity. As a signal molecule, sulfur dioxide (SO2) plays an important role in lysosome metabolism. However, the connection of metabolism between the SO2 and viscosity in lysosomes is still unknown. Herein, we developed a benzothiazole-based near-infrared (NIR) fluorescent probe (Triph-SZ), which can monitor the SO2 derivatives and respond to the change of viscosity in lysosomes through two-photon imaging. Triph-SZ present high sensitivity and selectivity fluorescence response with the addition of SO2 derivatives based on the nucleophilic addition, and it also exhibits a sensitive fluorescence enhancement to environmental viscosity, which allows Triph-SZ to be employed to monitor the level of HSO3- and viscosity changes in lysosomes by the two-photon fluorescence lifetime imaging microscopy.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Células HeLa , Humanos , Microscopia de Fluorescência , Dióxido de Enxofre , Viscosidade
8.
ACS Appl Bio Mater ; 4(2): 1221-1228, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014475

RESUMO

The structural modulation of multicompartment porous nanomaterials is one of the major challenges of nanoscience. Herein, by utilizing the polyhedral effects/characteristics of metal-organic frameworks (MOFs), we present a versatile approach to construct MOF-organosilica hybrid branched nanocomposites with MOF cores, SiO2 shells, and periodic mesoporous organosilica (PMO) branches. The morphology, structure, and functions of the obtained hybrid nanocomposites can be facilely modulated by varying particle size, shape, or crystalline structures of the MOF cores. Specifically, these branched multicompartment porous nanoparticles exhibit evasion behaviors in epithelial cells compared with macrophage cells, which may endow them great potential as a vehicle for immunotherapy.


Assuntos
Estruturas Metalorgânicas/síntese química , Nanocompostos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Estruturas Metalorgânicas/toxicidade , Camundongos , Nanocompostos/toxicidade , Tamanho da Partícula , Porosidade , Células RAW 264.7 , Dióxido de Silício/química , Dióxido de Silício/toxicidade
9.
Cancers (Basel) ; 12(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050177

RESUMO

Macrophages line the walls of microvasculature, extending processes into the blood flow to capture foreign invaders, including nano-scale materials. Using mesoporous silica nanoparticles (MSNs) as a model nano-scale system, we show the interplay between macrophages and MSNs from initial uptake to intercellular trafficking to neighboring cells along microtubules. The nature of cytoplasmic bridges between cells and their role in the cell-to-cell transfer of nano-scale materials is examined, as is the ability of macrophages to function as carriers of nanomaterials to cancer cells. Both direct administration of nanoparticles and adoptive transfer of nanoparticle-loaded splenocytes in mice resulted in abundant localization of nanomaterials within macrophages 24 h post-injection, predominately in the liver. While heterotypic, trans-species nanomaterial transfer from murine macrophages to human HeLa cervical cancer cells or A549 lung cancer cells was robust, transfer to syngeneic 4T1 breast cancer cells was not detected in vitro or in vivo. Cellular connections and nanomaterial transfer in vivo were rich among immune cells, facilitating coordinated immune responses.

10.
Acta Pharm Sin B ; 10(8): 1476-1491, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963944

RESUMO

Ubiquitin specific peptidase 28 (USP28) is closely associated to the occurrence and development of various malignancies, and thus has been validated as a promising therapeutic target for cancer therapy. To date, only few USP28 inhibitors with moderate inhibitory activity have been reported, highly potent and selective USP28 inhibitors with new chemotypes remain to be discovered for pathologically investigating the roles of deubiquitinase. In this current study, we reported the synthesis and biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives as potent USP28 inhibitors. Especially, compound 19 potently inhibited USP28 (IC50 = 1.10 ± 0.02 µmol/L, K d = 40 nmol/L), showing selectivity over USP7 and LSD1 (IC50 > 100 µmol/L). Compound 19 was cellularly engaged to USP28 in gastric cancer cells. Compound 19 reversibly bound to USP28 and directly affected its protein levels, thus inhibiting the proliferation, cell cycle at S phase, and epithelial-mesenchymal transition (EMT) progression in gastric cancer cell lines. Docking studies were performed to rationalize the potency of compound 19. Collectively, compound 19 could serve as a new tool compound for the development of new USP28 inhibitors for exploring the roles of deubiquitinase in cancers.

11.
Adv Mater ; 31(12): e1806774, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30702780

RESUMO

Targeted drug delivery remains at the forefront of biomedical research but remains a challenge to date. Herein, the first superassembly of nanosized metal-organic polyhedra (MOP) and their biomimetic coatings of lipid bilayers are described to synergistically combine the advantages of micelles and supramolecular coordination cages for targeted drug delivery. The superassembly technique affords unique hydrophobic features that endow individual MOP to act as nanobuilding blocks and enable their superassembly into larger and well-defined nanocarriers with homogeneous sizes over a broad range of diameters. Various cargos are controllably loaded into the MOP with high payloads, and the nanocages are then superassembled to form multidrug delivery systems. Additionally, functional nanoparticles are introduced into the superassemblies via a one-pot process for versatile bioapplications. The MOP superassemblies are surface-engineered with epidermal growth factor receptors and can be targeted to cancer cells. In vivo studies indicated the assemblies to have a substantial circulation half-life of 5.6 h and to undergo renal clearance-characteristics needed for nanomedicines.


Assuntos
Portadores de Fármacos/química , Substâncias Macromoleculares/química , Metais/química , Nanopartículas/química , Compostos Organometálicos/química , Células A549 , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Modelos Animais , Tamanho da Partícula , Propriedades de Superfície
12.
Fetal Pediatr Pathol ; 38(1): 63-71, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30585108

RESUMO

INTRODUCTION: A range of cerebrocortical development malformations (MCD) ranging from simplified gyral patterns to the complete loss of gyri and sulci is associated with mutations in a cluster of highly homolog ß-tublin genes, such as TUBB2A and TUBB2B. CASE REPORT: The fetus had pachygyria, asymmetrical perisylvian polymicrogyria, dysplasia of the lateral sulcus and insula, agenesis of the splenium and partial agenesis of the body corpus callosum, cerebellar superior vermian hypoplasia with agenesis of the inferior vermis. Karyotype and microarray were normal. Trio Medical Exome Sequencing detected a de novo novel heterozygous mutation c.862G > A (p.E288K) in the tubulinpathy genes. Long-range PCR and Sanger sequencing specific for TUBB2A and TUBB2B gene detected a heterozygous variant c.862G > A specific to TUBB2B. CONCLUSION: The combination of LR-PCR amplification and medical exome sequencing allows mutational assessment in tubulinopathy genes. Our study expands the spectrum of malformations associated with mutations in the ß-tubulin gene TUBB2B.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento do Exoma/métodos , Lisencefalia/genética , Reação em Cadeia da Polimerase/métodos , Tubulina (Proteína)/genética , Feto/anormalidades , Humanos , Mutação
13.
Genome Biol ; 19(1): 78, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921301

RESUMO

Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.


Assuntos
Código de Barras de DNA Taxonômico/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica/métodos , Software , Transcriptoma/genética
15.
Breast Cancer Res ; 16(6): 476, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25499443

RESUMO

INTRODUCTION: This study helps to define the implications of breast cancer anti-estrogen resistance 3 (BCAR3) in breast cancer and extends the current understanding of its molecular mechanism of action. BCAR3 has been shown to promote cell proliferation, migration and attachment to extracellular matrix components. However, in a cohort of metastatic breast cancer patients who received tamoxifen treatment, high BCAR3 mRNA levels were associated with favorable progression-free survival outcome. These results suggest that, besides its established roles, BCAR3 may have additional mechanisms of action that regulate breast cancer aggressive phenotype. In this study, we investigated whether BCAR3 is a novel antagonist of the canonical transforming growth factor ß (TGFß) pathway, which induces potent migration and invasion responses in breast cancer cells. METHODS: We surveyed functional genomics databases for correlations between BCAR3 expression and disease outcomes of breast cancer patients. We also studied how BCAR3 could regulate the TGFß/Smad signaling axis using Western blot analysis, coimmunoprecipitation and luciferase assays. In addition, we examined whether BCAR3 could modulate TGFß-induced cell migration and invasion by using an automated imaging system and a confocal microscopy imaging-based matrix degradation assay, respectively. RESULTS: Relatively low levels of BCAR3 expression in primary breast tumors correlate with poor distant metastasis-free survival and relapse-free survival outcomes. We also found a strong correlation between the loss of heterozygosity at BCAR3 gene alleles and lymph node invasion in human breast cancer, further suggesting a role for BCAR3 in preventing disease progression. In addition, we found BCAR3 to inhibit Smad activation, Smad-mediated gene transcription, Smad-dependent cell migration and matrix digestion in breast cancer cells. Furthermore, we found BCAR3 to be downregulated by TGFß through proteasome degradation, thus defining a novel positive feedback loop mechanism downstream of the TGFß/Smad signaling pathway. CONCLUSION: BCAR3 is considered to be associated with aggressive breast cancer phenotypes. However, our results indicate that BCAR3 acts as a putative suppressor of breast cancer progression by inhibiting the prometastatic TGFß/Smad signaling pathway in invasive breast tumors. These data provide new insights into BCAR3's molecular mechanism of action and highlight BCAR3 as a novel TGFß/Smad antagonist in breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/genética , Neoplasias da Mama/genética , RNA Mensageiro/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Fatores de Troca do Nucleotídeo Guanina , Humanos , Células MCF-7 , Prognóstico , Transdução de Sinais , Tamoxifeno/uso terapêutico
16.
Breast Cancer Res ; 15(3): R49, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23786849

RESUMO

INTRODUCTION: Deregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFß) in breast cancer progression. METHODS: Cyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion. RESULTS: We found TGFß to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFß-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFß-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFß promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in vivo studies indicated that locally advanced features of the invasive tumors, including skeletal muscle, mammary fat pad and lymphovascular invasion, as well as ulcerated skin, were attenuated in the absence of cyclin D1 and p21. CONCLUSIONS: Thus, our findings highlight the cyclin D1/p21 signaling axis as a critical regulator of TGFß-mediated tumor growth initiation and local tumor cell invasion, both in vitro and in vivo.


Assuntos
Ciclina D1/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biol Chem ; 288(17): 11807-23, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479725

RESUMO

TGF-ß plays an important role in breast cancer progression as a prometastatic factor, notably through enhancement of cell migration. It is becoming clear that microRNAs, a new class of small regulatory molecules, also play crucial roles in mediating tumor formation and progression. We found TGF-ß to down-regulate the expression of the microRNA miR-584 in breast cancer cells. Furthermore, we identified PHACTR1, an actin-binding protein, to be positively regulated by TGF-ß in a miR-584-dependent manner. Moreover, we found TGF-ß-mediated down-regulation of miR-584 and increased expression of PHACTR1 to be required for TGF-ß-induced cell migration of breast cancer cells. Indeed, both overexpression of miR-584 and knockdown of PHACTR1 resulted in a drastic reorganization of the actin cytoskeleton and reduced TGF-ß-induced cell migration. Our data highlight a novel signaling route whereby TGF-ß silences the expression of miR-584, resulting in enhanced PHACTR1 expression, and further leading to actin rearrangement and breast cancer cell migration.


Assuntos
Actinas/metabolismo , Neoplasias da Mama/mortalidade , Movimento Celular , MicroRNAs/biossíntese , Proteínas dos Microfilamentos/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Actinas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
18.
Nucleic Acids Res ; 37(13): 4518-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19483093

RESUMO

Products of the Steroid Receptor RNA Activator gene (SRA1) have the unusual property to modulate the activity of steroid receptors and other transcription factors both at the RNA (SRA) and the protein (SRAP) level. Balance between these two genetically linked entities is controlled by alternative splicing of intron-1, whose retention alters SRAP reading frame. We have previously found that both fully-spliced SRAP-coding and intron-1-containing non-coding SRA RNAs co-exist in breast cancer cell lines. Herein, we report a significant (Student's t-test, P < 0.003) higher SRA-intron-1 relative expression in breast tumors with higher progesterone receptor contents. Using an antisense oligoribonucleotide, we have successfully reprogrammed endogenous SRA splicing and increased SRA RNA-intron-1 relative level in T5 breast cancer cells. This increase is paralleled by significant changes in the expression of genes such as plasminogen urokinase activator and estrogen receptor beta. Estrogen regulation of other genes, including the anti-metastatic NME1 gene, is also altered. Overall, our results suggest that the balance coding/non-coding SRA transcripts not only characterizes particular tumor phenotypes but might also, through regulating the expression of specific genes, be involved in breast tumorigenesis and tumor progression.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Oligorribonucleotídeos Antissenso , RNA não Traduzido/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Feminino , Humanos , Íntrons , Oligorribonucleotídeos Antissenso/química , RNA Longo não Codificante , RNA não Traduzido/química , RNA não Traduzido/genética , Receptores de Progesterona/metabolismo
19.
DNA Cell Biol ; 25(7): 418-28, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16848684

RESUMO

The Steroid Receptor RNA Activator 1 (SRA1) has originally been described as a noncoding RNA specifically activating steroid receptor transcriptional activity. We have, however, identified, in human breast tissue, exon- 1 extended SRA1 isoforms containing two initiating AUG codons and encoding a protein we called SRAP. We recently reported a decreased estrogen receptor activity in breast cancer cells overexpressing SRAP, suggesting antagonist roles played by SRA1 RNA and SRAP. SRA1 appears to be the first example of a molecule active both at the RNA and at the protein level. No data are currently available regarding the mechanisms possibly involved in the generation of coding and noncoding functional SRA1 RNAs. Using 5'-Rapid Amplification of cDNA Extremities (5'-RACE), we have herein identified several putative transcription initiation sites surrounding the second methionine codon and used to generate coding SRA1 transcripts. In the process, we also identified an alternatively spliced noncoding SRA1 transcript still containing an intron-1 sequence. Using targeted RT-PCR approaches, we confirmed the presence in breast cancer cell lines of SRA1 RNAs containing a full as well as a partial intron-1 sequence and established that the relative proportion of these RNAs varied within breast cancer cell lines. Using a "minigene" strategy, we also showed that artificial RNAs containing the SRA1 intron-1 sequence are alternatively spliced in breast cancer cell lines. Interestingly, the splicing pattern of the minigene products parallels the one of the endogenous SRA1 transcripts. Altogether, our data suggest that the primary genomic sequence in and around intron-1 is sufficient to lead to a differential splicing of this intron. We propose that alternative splicing of intron-1 is one mechanism used by breast cancer cells to regulate the balance between coding and functional noncoding SRA1 RNAs.


Assuntos
Processamento Alternativo , RNA Neoplásico/genética , RNA não Traduzido/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Feminino , Engenharia Genética , Humanos , Íntrons , Isoformas de Proteínas/genética , RNA Longo não Codificante , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA