Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Drug Resist Updat ; 77: 101154, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39366066

RESUMO

Non-small cell lung cancer (NSCLC) remains the foremost contributor to cancer-related fatalities globally, with limited effective therapeutic modalities. Recent research has shed light on the role of ferroptosis in various types of cancers, offering a potential avenue for improving cancer therapy. Herein, we identified E3 ubiquitin ligase deltex 2 (DTX2) as a potential therapeutic target candidate implicated in promoting NSCLC cell growth by inhibiting ferroptosis. Our investigation revealed a significant upregulation of DTX2 in NSCLC cells and tissues, which was correlated with poor prognosis. Downregulation of DTX2 suppressed NSCLC cell growth both in vitro and in vivo, while its overexpression accelerated cell proliferation. Moreover, knockdown of DTX2 promoted ferroptosis in NSCLC cells, which was mitigated by DTX2 overexpression. Mechanistically, we uncovered that DTX2 binds to nuclear receptor coactivator 4 (NCOA4), facilitating its ubiquitination and degradation via the K48 chain, which subsequently dampens NCOA4-driven ferritinophagy and ferroptosis in NSCLC cells. Notably, DTX2 knockdown promotes cisplatin-induced ferroptosis and overcomes drug resistance of NSCLC cells. These findings underscore the critical role of DTX2 in regulating ferroptosis and NCOA4-mediated ferritinophagy, suggesting its potential as a novel therapeutic target for NSCLC.

2.
Clin Respir J ; 18(8): e13802, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113352

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the cancers with the highest mortality and morbidity in the world. Circular RNAs (circRNAs) are newly identified players in carcinogenesis and development of various cancers. This study is aimed at exploring the functional effects and mechanism of circ_0028826 in the development of NSCLC. METHODS: Real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of circ_0028826, IDH2 mRNA, and miR-758-3p. IDH2, Bcl2, Bax, and E-cadherin protein levels were detected using a western blot. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and transwell assays were used to assess the capacities of proliferation, apoptosis, migration, and invasion. Interaction between miR-758-3p and circ_0028826 or IDH2 was validated using a dual-luciferase reporter assay. The role of circ_0028826 in vivo was checked based on a xenograft tumor model. RESULTS: Circ_0028826 was elevated in NSCLC, and its absence inhibited NSCLC cell proliferation, migration, invasion, and induced apoptosis. In terms of mechanism, circ_0028826 increased IDH2 expression by targeting miR-758-3p. In addition, circ_0028826 knockdown also regulated IDH2 by targeting miR-758-3p to inhibit tumor growth in vivo. CONCLUSION: Circ_0028826 promoted the development of NSCLC via regulation of the miR-758-3p/IDH2 axis, providing a new strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Isocitrato Desidrogenase , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/genética , Animais , Camundongos , Linhagem Celular Tumoral , Apoptose/genética , Movimento Celular/genética
3.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
4.
Clin Exp Pharmacol Physiol ; 51(8): e13904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923060

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.


Assuntos
Apoptose , Autofagia , Traumatismo por Reperfusão Miocárdica , Proteínas do Tecido Nervoso , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Masculino , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
5.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761182

RESUMO

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Assuntos
Enterococcus faecalis , Fusobacterium nucleatum , Macrófagos , Estresse Fisiológico , Fusobacterium nucleatum/fisiologia , Fusobacterium nucleatum/genética , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Citocinas/metabolismo , Citocinas/genética , Aderência Bacteriana , Técnicas de Cocultura , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Inflamação
7.
Protein Pept Lett ; 30(12): 1038-1047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962044

RESUMO

BACKGROUND: Clinically, Fuzhengkangai formulation (FZKA) has been proven to have significant therapeutic effects on non-small lung cancer (NSCLC), although the mechanism is unknown. We aimed to explore the potential mechanism of FZKA in the treatment of NSCLC in this study. METHODS: We obtained the active components and targets of FZKA by TCMSP. The target genes of NSCLC were searched from OMIM, GEO (GSE18842), and GeneCards database. Cytoscape (3.7.2) software was used to construct a "drug-compound-cross-target interaction" interaction network, and the STING database was used to analyze previous cross-target interactions. Meanwhile, the results were visualized and processed by performing GO enrichment analysis and KEGG signaling pathway enrichment analysis at the target site. The core targets were docked with active components through AutoDockTools-1.5.6 software. Finally, we used cellular experiments to validate the bioinformatics predictions. RESULTS: There were 40 active and 465 potential genes from the TCMSP database. Key active chemicals, namely Quercetin, Kaempferol, Luteolin, and Tanshinone IIA, and 176 targets were deemed as targets of FZKA against NSCLC by PPI network analysis. GO and KEGG enrichment analyses suggest that FZKA acts primarily through the PI3K-AKT and MAPK signaling pathways in the treatment of NSCLC. Moreover, cellular assays showed that Quercetin, Kaempferol, Luteolin, and Tanshinone IIA not only reduced the viability of A549 cells and promoted apoptosis but also significantly decreased the p-AKT/AKT and p-ERK1/2/ERK1/2 ratios. CONCLUSION: Our data suggested that FZKA can be involved in the treatment of NSCLC through multiple components, targets and pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Quempferóis , Luteolina , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quercetina
8.
Artigo em Inglês | MEDLINE | ID: mdl-37231719

RESUMO

INTRODUCTION: JAK3 kinase inhibitor has become an effective means to treat tumors and autoimmune diseases. METHOD: In this study, molecular docking and molecular dynamics simulation were used to study the theoretical interaction mechanism between 1-phenylimidazolidine-2-one molecules and JAK3 protein. RESULT: The results of molecular docking showed that the six 1-phenylimidazolidine-2-one derivatives obtained by virtual screening were bound to the ATP pocket of JAK3 kinase, which were competitive inhibitors of ATP, and were mainly bound to the pocket through hydrogen bonding and hydrophobic interaction. Further, MM/GBSA based on molecular dynamics simulation sampling was used to calculate the binding energy between six molecules and the JAK3 kinase protein. Subsequently, the binding energy was decomposed into the contribution of each amino acid residue, of which Leu905, Lys855, Asp967, Leu956, Tyr904, and Val836 were the main energy-contributing residues. Among them, the molecule numbered LCM01415405 can interact with the specific amino acid Arg911 of JAK3 kinase, suggesting that the molecule may be a selective JAK3 kinase inhibitor. The root-mean-square fluctuation (RMSF) of JAK3 kinase pocket residues during molecular dynamics simulation showed that the combination of six new potential small molecule inhibitors with JAK3 kinase could reduce the flexibility of JAK3 kinase pocket residues. CONCLUSION: These findings reveal the mechanism of 1-phenylimidazolidine-2-one derivatives on JAK3 protein and provide a relatively solid theoretical basis for the development and structural optimization of JAK3 protein inhibitors.

9.
Exp Mol Med ; 54(11): 1940-1954, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369467

RESUMO

Pancreatic cancer (PC) is one of the most malignant tumors. Rapid progression and distant metastasis are the main causes of patient death. Hypoxia is a hallmark of multiple cancers and is involved in tumor biology. However, little is known about the roles of circRNAs in glycolysis and hypoxia-mediated progression of PC. Here, the expression pattern of hypoxia-related circRNAs was analyzed using RNA sequencing. A unique circRNA termed circRNF13 was found to be upregulated in PC tissues and may be a potential prognostic indicator. HIF-1α and EIF4A3 are involved in regulating the biogenesis of circRNF13. Furthermore, circRNF13 was validated to exert a stimulative effect on cell proliferation, angiogenesis, invasion and glycolysis. Importantly, we found that circRNF13 promoted PDK3 levels by acting as a miR-654-3p sponge, thus promoting the PC malignant process. Collectively, our results reveal that hypoxia-induced circRNF13 mediated by HIF-1α and EIF4A3 promotes tumor progression and glycolysis in PC, indicating the potential of circRNF13 as a prognostic biomarker and therapeutic target for PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Glicólise/genética , Hipóxia/metabolismo , Neoplasias Pancreáticas
10.
J Pharm Sci ; 111(12): 3224-3231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202251

RESUMO

Gefitinib (GEF) is an anti-tumor oral solid formulation with a superior advantage for lung tumors. However, it has poor aqueous solubility which limits its utility in vivo. Herein, a novel cocrystal (GEF-RES) assembled by GEF and RES (Resveratrol) has been successfully prepared and comprehensively characterized by differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy and powder X-ray diffraction. A single-crystal structure of the GEF-RES cocrystal was solved and illustrated in detail. In aqueous hydrochloric acid, the GEF-RES cocrystal showed that the maximum concentration of GEF was slightly higher than that of raw GEF. Furthermore, the thermal and physical stability of the GEF-RES cocrystal were also evaluated in this paper. The enhanced solubility and excellent solid-state stability results may provide new potential to the application of key GEF in clinical.


Assuntos
Solubilidade , Resveratrol , Gefitinibe , Cristalização/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X , Difração de Pó
11.
Onco Targets Ther ; 15: 629-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35698606

RESUMO

Gallbladder cancer (GBC) is the most common type of biliary tract cancer. The GBC is often diagnosed at an advanced stage, which limits surgical intervention due to its aggressive nature, and as a consequence of its insensitivity to chemotherapy, more effective treatments are required. In GBC, the efficacy of chemotherapy combined with anti-PD-L1/VEGF inhibition remains to be clarified. The present case report describes successful treatment by toripalimab in combination with bevacizumab and gemcitabine in a patient with metastatic GBC and PD-L1 combined positive score (CPS) =30. After six courses of therapy, a partial response was observed in the patient's clinical condition. So far, her PFS has exceeded 15 months. To the best of our knowledge, there was no other case where toripalimab plus bevacizumab were used in combination with gemcitabine as an effective treatment strategy for GBC. The remarkable response is likely to be related to the positive expression of PD-L1. Further, VEGF inhibition in combination with chemotherapy may result in improved clinical outcomes due to increased antitumor immunity. Chemotherapy regimens combined with anti-PD-L1/VEGF inhibition are promising therapies for GBC. Further well-designed prospective clinical trials are needed in order to confirm the efficacy and safety of the three-drug regimen.

12.
Front Cell Infect Microbiol ; 12: 879423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573793

RESUMO

In subgingival plaque biofilms, Fusobacterium nucleatum is closely related to the occurrence and development of periodontitis. Streptococcus gordonii, as an accessory pathogen, can coaggregate with periodontal pathogens, facilitating the subgingival colonization of periodontal pathogens. Studies have shown that F. nucleatum can coaggregate with S. gordonii and colonize the subgingival plaque. However, most studies have focused on monocultures or coinfection of species and the potential impact of coaggregation between the two species on periodontal interactions to human gingival epithelial cells (hGECs) remains poorly understood. The present study explored the effect of coaggregation between F. nucleatum and S. gordonii on subgingival synergistic virulence to hGECs. The results showed that coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs compared with that in the F. nucleatum monoculture and coinfection group. Coaggregation and coinfection with F. nucleatum both enhanced S. gordonii adhesion to hGECs, but neither of the two groups affected S. gordonii invasion to hGECs compared with S. gordonii monoculture. The gene expression levels of TLR2 and TLR4 in hGECs in the coaggregation group were higher than those in the monoculture groups but lower than those in the coinfection group. Compared with coinfection, the coaggregation inhibited apoptosis of hGECs and promoted the secretion of the proinflammatory cytokines TNF-α and IL-6 by hGECs, showed a synergistic inflammatory effect, while coaggregation inhibited the secretion of the anti-inflammatory cytokine TGF-ß1. Coaggregation enhanced the phosphorylation of p65, p38, and JNK proteins and therefore activated the NF-κB and MAPK signaling pathways. Pretreatment with a pathway antagonist/inhibitor decreased the phosphorylation levels of proteins and the secretion of TNF-α and IL-6. In conclusion, coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs. However, it enhanced the adhesion of S. gordonii to hGECs. Compared with coinfection, coaggregation inhibited the apoptosis of hGECs. The coaggregation coordinately promoted the secretion of TNF-α and IL-6 by hGECs through the TLR/NF-κB and TLR/MAPK signaling pathways while inhibiting the secretion of TGF-ß1, thus aggravating the inflammatory response of hGECs.


Assuntos
Coinfecção , Fusobacterium nucleatum , Aderência Bacteriana , Células Epiteliais/microbiologia , Humanos , Interleucina-6 , NF-kappa B , Streptococcus gordonii/genética , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa/farmacologia , Virulência
13.
Front Cell Infect Microbiol ; 11: 783323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071038

RESUMO

Interspecies coaggregation promotes transcriptional changes in oral bacteria, affecting bacterial pathogenicity. Streptococcus gordonii (S. gordonii) and Fusobacterium nucleatum (F. nucleatum) are common oral inhabitants. The present study investigated the transcriptional profiling of S. gordonii and F. nucleatum subsp. polymorphum in response to the dual-species coaggregation using RNA-seq. Macrophages were infected with both species to explore the influence of bacterial coaggregation on both species' abilities to survive within macrophages and induce inflammatory responses. Results indicated that, after the 30-min dual-species coaggregation, 116 genes were significantly up-regulated, and 151 genes were significantly down-regulated in S. gordonii; 97 genes were significantly down-regulated, and 114 genes were significantly up-regulated in F. nucleatum subsp. polymorphum. Multiple S. gordonii genes were involved in the biosynthesis and export of cell-wall proteins and carbohydrate metabolism. F. nucleatum subsp. polymorphum genes were mostly associated with translation and protein export. The coaggregation led to decreased expression levels of genes associated with lipopolysaccharide and peptidoglycan biosynthesis. Coaggregation between S. gordonii and F. nucleatum subsp. polymorphum significantly promoted both species' intracellular survival within macrophages and attenuated the production of pro-inflammatory cytokines IL-6 and IL-1ß. Physical interactions between these two species promoted a symbiotic lifestyle and repressed macrophage's killing and pro-inflammatory responses.


Assuntos
Fusobacterium nucleatum , Streptococcus gordonii , Bactérias , Aderência Bacteriana , Fusobacterium nucleatum/genética , Imunidade , Macrófagos , Streptococcus gordonii/genética
14.
J Drug Target ; 28(3): 330-338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479288

RESUMO

Direct exposure to Ultraviolet (UV) radiation causes progressive damages in retinal cells, which is one of the hypothetical mechanisms underlying age-related retinopathy or macular degeneration. The protective effects of Apocynin against UV damages were firstly tested in retinal pigment epithelium cells (RPEs) and retinal ganglion cells (RGCs). Subsequently the beneficial effect of Apocynin on mouse retinas against light damage were examined. Next, microarray profiling was used to identify the genes regulated by Apocynin in both RPEs and RGCs. A candidate gene was isolated for functional characterisation by knock-down study. Apocynin was shown to inhibit cell death, reduce oxidative stress and deoxyribonucleic acid damages in both RPEs and RGCs challenged with UV. Intravitreal application of Apocynin also improved retinal dysfunction caused by light damage. Sirtuin 1 (SIRT1) was identified as induced by Apocynin by microarray study. The induction was confirmed by realtime-PCR and western blotting. Knocking down SIRT1 antagonised the protective effect of Apocynin against UV damages in both RPEs and RGCs. Apocynin is a novel agent that shows both in vitro and in vivo efficacies against UV radiation induced retina damages. SIRT1 pathway is implicated in UV radiation protection of Apocynin in retinal cells.


Assuntos
Acetofenonas/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Células Ganglionares da Retina/efeitos da radiação , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos da radiação , Sirtuína 1/genética , Raios Ultravioleta/efeitos adversos
15.
Cell Death Dis ; 9(2): 149, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396463

RESUMO

Circadian disruption has been implicated in tumour development, but the underlying mechanism remains unclear. Here, we show that the molecular clockwork within malignant human pancreatic epithelium is disrupted and that this disruption is mediated by miR-135b-induced BMAL1 repression. miR-135b directly targets the BMAL1 3'-UTR and thereby disturbs the pancreatic oscillator, and the downregulation of miR-135b is essential for the realignment of the cellular clock. Asynchrony between miR-135b and BMAL1 expression impairs the local circadian gating control of tumour suppression and significantly promotes tumourigenesis and resistance to gemcitabine in pancreatic cancer (PC) cells, as demonstrated by bioinformatics analyses of public PC data sets and in vitro and in vivo functional studies. Moreover, we found that YY1 transcriptionally activated miR-135b and formed a 'miR-135b-BMAL1-YY1' loop, which holds significant predictive and prognostic value for patients with PC. Thus, our work has identified a novel signalling loop that mediates pancreatic clock disruption as an important mechanism of PC progression and chemoresistance.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Biológicos , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fator de Transcrição YY1/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Prognóstico
16.
Cancer Biol Ther ; 19(5): 359-363, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29400604

RESUMO

BACKGROUND: Anaplastic lymphoma kinase (ALK) is a validated molecular target in non-small-cell lung cancer (NSCLC). However, the clinical benefits of ALK inhibitors are almost universally limited by the emergence of drug resistance. METHODS: We monitored the plasma circulating tumor DNA (ctDNA) using captured-based ultra-deep sequencing analysis of one patient with metastatic ALK-positive NSCLC who had received therapies including first-, second- and third-generation ALK inhibitors. Functional in vitro studies were further undertaken to elucidate the mechanism of resistance. RESULTS: ALK T1151Sins mutation was detected when the patient developed resistance to ceritinib, and undetectable when she responded to lorlatinib. MET amplification was present when the tumor developed resistance to lorlatinib, and reduced when the patient received combination therapy of lorlatinib with crizotinib, which corresponded to clinical radiologic responses. In addition, further functional in vitro studies demonstrated that ALK harboring the T1151Sins mutation, while conferring resistance to ceritinib, was inhibited by lorlatinib. CONCLUSIONS: Clinical evidence and in vitro validation revealed the clinical usefulness of captured-base ultra-deep sequencing on longitudinal plasma ctDNA in revealing the underlying resistance mechanism and guiding the precise administration of ALK inhibitors in patients with advanced ALK-positive NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA Tumoral Circulante/genética , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia
17.
Bull Cancer ; 105(2): 146-154, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29290332

RESUMO

BACKGROUND: The predictive value of systemic inflammatory markers has been explored in various types of cancer. In the present study, we aimed to investigate the association between pretreatment neutrophil/lymphocyte ratio (NLR) and tumor metastasis in pancreatic cancer, and the values of NLR as a prognostic factor of overall survival. METHODS: Clinical and laboratory data from 256 consecutive pancreatic cancer patients were analyzed retrospectively. The NLR was recorded before treatment and analyzed along with clinicopathological characteristics and overall survival of pancreatic cancer patients. RESULTS: Multivariate analysis revealed that pretreatment NLR (HR: 2.393; 95% CI: 1.326-4.320; P=0.004) was an independent risk factor for distant metastasis. Furthermore, COX regression analysis showed that in addition to pretreatment NLR (HR: 1.871; 95% CI: 1.413-2.477; P<0.001), metastasis and stage were independent prognostic factors. CONCLUSION: Pretreatment NLR values were significantly associated with distant metastasis in pancreatic cancer patients. Higher NLR values were detected in metastatic disease and may be an independent prognostic factor of overall survival in pancreatic cancer patients.


Assuntos
Linfócitos , Neutrófilos , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Análise de Variância , Feminino , Humanos , Estimativa de Kaplan-Meier , Contagem de Leucócitos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Contagem de Plaquetas , Prognóstico , Curva ROC
19.
J Hematol Oncol ; 9(1): 76, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581375

RESUMO

BACKGROUND: Trastuzumab, a humanized antibody targeting HER2, exhibits remarkable therapeutic efficacy against HER2-positive gastric cancer. However, recurrent therapeutic resistance presents revolutionary claims. Warburg effect and AKT signaling pathway was involved in the resistance to trastuzumab. Our previous studies have demonstrated that overexpression of metastasis associated with the colon cancer 1 (MACC1) predicted poor prognosis of GC and promoted tumor cells proliferation and invasion. In this study, we found that MACC1 was significantly upregulated in trastuzumab-resistant cell lines. Besides, downregulation of MACC1 reversed this resistance. METHODS: The effect of trastuzumab and glycolysis inhibitor combination on cell viability, apoptosis, and cell metabolism was investigated in vitro using established trastuzumab-resistant GC cell lines. We assessed the impact of trastuzumab combined with oxamate on tumor growth and metabolism in an established xenograft model of HER2-positive GC cell lines. RESULTS: Here, we found that MACC1 was significantly upregulated in trastuzumab-resistant cell lines. Besides, downregulation of MACC1 in trastuzumab-resistant cells reversed this resistance. Overexpression of MACC1-induced trastuzumab resistance, enhanced the Warburg effect, and activated the PI3K/AKT signaling pathway, while downregulation of MACC1 presented the opposite effects. Moreover, when the PI3K/AKT signaling pathway was inhibited, the effects of MACC1 on resistance and glycolysis were diminished. Our findings indicated that MACC1 promoted the Warburg effect mainly through the PI3K/AKT signaling pathway, which further enhanced GC cells trastuzumab resistance. CONCLUSIONS: Our results indicate that co-targeting of HER2 and the Warburg effect reversed trastuzumab resistance in vitro and in vivo, suggesting that the combination might overcome trastuzumab resistance in MACC1-overexpressed, HER2-positive GC patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/análise , Trastuzumab/farmacologia , Aerobiose , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular , Feminino , Glicólise/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/análise , Transativadores , Fatores de Transcrição/farmacologia
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(5): 471-6, 2016 May.
Artigo em Chinês | MEDLINE | ID: mdl-27269920

RESUMO

OBJECTIVE: To investigate the correlation between cyclin-dependent kinase inhibitor p27kip1 and trastuzumab-resistance in gastric cancer.
 METHODS: We selected HER2-overexpressed human gastric cancer cell line NCI-N87 to establish trastuzumab-resistant NCI-N87/TR cell line by stepwise exposure to different doses of trastuzumab. The 50% inhibitory concentration (IC(50)) of trastuzumab and resistance index (RI) were calculated or analyzed by MTT assay. The expression levels of cdk2 and p27kip1 were detected by Western blot. After the treatment with cdk2 inhibitor (Purvalanol A), the expression levels of relevant proteins in NCI-N87/TR cells were detected by Western blot, and the sensitivity to trastuzumab was analyzed by MTT assay. 
 RESULTS: Compared with NCI-N87 cells, the expression of cdk2 was significantly increased in NCI-N87/TR cells (P<0.001), while the expression of p27kip1 showed a significant decrease (P<0.001). Restoration of the p27kip1 protein expression by cdk2 inhibitor (Purvalanol A) increased the sensitivity of NCI-N87/TR to trastuzumab.
 CONCLUSION: Down-regulation of p27kip1 might be a mechanism for triggering trastuzumab resistance to gastric cancer cell line NCI-N87.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Gástricas/metabolismo , Trastuzumab/farmacologia , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Purinas/farmacologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA