Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Medicine (Baltimore) ; 103(30): e39150, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058814

RESUMO

RATIONALE: Hyalinizing clear cell carcinoma (HCCC) of the salivary glands is a rare low-grade malignant tumor. This type of tumor is particularly uncommon in the sublingual glands. PATIENT CONCERNS: A 57-year-old female with a mass on the left side of the floor of the mouth that had been present for 2 months. The computed tomography scan of the neck revealed a nodular abnormal density shadow in the left sublingual area, measuring approximately 2.6 cm × 1.9 cm. DIAGNOSES: Primary HCCC of the sublingual gland. INTERVENTIONS: The patient underwent surgical treatment and reconstruction using a left anterolateral femoral free flap, which showed immunohistochemical positivity for CK 5/6, CK 7, CK (AE1/AE3), and Ki-67 (<5%), but negative for SMA and S-100. OUTCOMES: No recurrence was observed during the 12-month postoperative follow-up period. LESSONS: The absence of characteristic clinical manifestations makes HCCC highly susceptible to misdiagnoses. This case presents a rare instance of HCCC in the sublingual gland, providing a reference for the clinical diagnosis and treatment of the disease.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias da Glândula Sublingual , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Glândula Sublingual/patologia , Neoplasias da Glândula Sublingual/cirurgia , Neoplasias da Glândula Sublingual/diagnóstico , Adenocarcinoma de Células Claras/cirurgia , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/diagnóstico , Tomografia Computadorizada por Raios X , Glândula Sublingual/patologia , Glândula Sublingual/cirurgia , Glândula Sublingual/diagnóstico por imagem
2.
Cancer Pathog Ther ; 2(2): 91-102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601483

RESUMO

Background: Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have become integral elements within the current landscape of breast cancer treatment modalities; however, they are associated with interstitial lung disease (ILD), which is rare but potentially fatal. Notably, only a few studies have compared the difference in ILD incidence between PD-1 and PD-L1 inhibitors. Therefore, this study aimed to assess the discrepancies regarding ILD risk between the two immune checkpoint inhibitors. We also reported three cases of ILD after PD-1 inhibitor treatment. Methods: We comprehensively searched PubMed, EMBASE, and the Cochrane Library to identify clinical trials that investigated PD-1/PD-L1 inhibitor treatment for patients with breast cancer. Pooled overall estimates of incidence and risk ratio (RR) were calculated with a 95% confidence interval (CI), and a mirror group analysis was performed using eligible studies. Results: This meta-analysis included 29 studies with 4639 patients who received PD-1/PD-L1 inhibitor treatment. A higher ILD incidence was observed among 2508 patients treated with PD-1 inhibitors than among 2131 patients treated with PD-L1 inhibitors (0.05 vs. 0.02). The mirror group analysis further revealed a higher ILD event risk in patients treated with PD-1 inhibitors than in those treated with PD-L1 inhibitors (RR = 2.34, 95% CI, 1.13-4.82, P = 0.02). Conclusion: Our findings suggest a greater risk of ILD with PD-1 inhibitors than with PD-L1 inhibitors. These findings are instrumental for clinicians in treatment deliberations, and the adoption of more structured diagnostic approaches and management protocols is necessary to mitigate the risk of ILD.

3.
Heliyon ; 10(8): e29361, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628726

RESUMO

Inflammation affects several aspects of lung cancer progression including cell proliferation, metastasis, apoptosis, angiogenesis, and drug resistance. Baicalin, an active component of Scutellaria baicalensis Georgi, exhibits anticancer activity in various cancers. However, the effects of baicalin on lung cancer and the underlying molecular mechanisms remain largely unknown. This study is to explore the effect and mechanism of baicalin on lung cancer cell A549 and urethane-induced mouse lung cancer. A cell viability assay, colony formation assay, wound healing assay, acridine orange/ethidium bromide (AO/EB) staining assay, Western blot assay, urethane-induced mouse lung cancer model, hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and ELISA assay were performed to investigate the effects of baicalin on lung cancer in vitro and in vivo. Network pharmacology analysis, molecular docking, gene silencing assays, and LPS-induced inflammation model were utilized to explore the molecular mechanisms underlying the effect of baicalin on lung cancer. Baicalin showed significant anti-proliferative, anti-migratory, anti-inflammatory and pro-apoptotic effects in vitro; it also inhibited the progression of urethane-induced mouse lung cancer in vivo. Mechanistically, suppressor of cytokine signaling 1 (SOCS1) was the key determinant for baicalin-induced inhibition of lung cancer. Baicalin increased SOCS1 expression to inactivate the NF-κB/STAT3 pathway to inhibit lung cancer in vitro and in vivo. Taken together, baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis, providing a prospective compound and novel target for lung cancer treatment.

4.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577934

RESUMO

Hepatitis B X­interacting protein (HBXIP) is a membrane protein located on the lysosomal surface and encoded by the Lamtor gene. It is expressed by a wide range of tumor types, including breast cancer, esophageal squamous cell carcinoma and hepatocellular carcinoma, and its expression is associated with certain clinicopathological characteristics. In the past decade, research on the oncogenic mechanisms of HBXIP has increased and the function of HBXIP in normal cells has been gradually elucidated. In the present review, the following was discussed: The normal physiological role of the HBXIP carcinogenic mechanism; the clinical significance of high levels of HBXIP expression in different tumors; HBXIP regulation of transcription, post­transcription and post­translation processes in tumors; the role of HBXIP in improving the antioxidant capacity of tumor cells; the inhibition of ferroptosis of tumor cells and regulating the metabolic reprogramming of tumor cells; and the role of HBXIP in promoting the malignant progression of tumors. In conclusion, the present review summarized the existing knowledge of HBXIP, established its carcinogenic mechanism and discussed future related research on HBXIP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Oncogênicas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Hepáticas/genética , Proteínas Oncogênicas/metabolismo
5.
Heart Lung ; 65: 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457967

RESUMO

BACKGROUND: Growing evidence has shown that antioxidant diets protect against heart failure (HF). However, the association between the composite dietary antioxidant index (CDAI), an important measure of overall antioxidants in the diet, and HF has received little attention. OBJECTIVE: The purpose of this study was to examine the relationship between the CDAI and HF. METHODS: A secondary cross-sectional analysis of the 2003 to 2019 National Health and Nutrition Examination Survey (NHANES) was performed. Weighted multivariable logistic regression was used to test the association between the CDAI and HF in four different models, with subgroup analysis and an interaction test subsequently performed. RESULTS: A total of 37,390 participants were included. The HF groups had lower CDAI levels than those in the non-HF group (0.29 ± 0.04 vs. -0.74 ± 0.16, p < 0.0001). After adjusting for demographic characteristics, lifestyle factors, and disease history, a negative association was found between the CDAI and HF (OR: 0.97, 95 % CI: 0.94, 1.00). There was an inverse trend whereby increasing the CDAI was associated with decreasing the odds of HF (p for trend < 0.001). The subgroup analysis and interaction test showed no significant dependence on demographic characteristics, lifestyle factors, and disease history with regard to this association (all p for interaction > 0.05). CONCLUSION: The CDAI was inversely associated with HF in US adults, with higher CDAI levels possibly being associated with a lower incidence of HF, suggesting that dietary antioxidants may help prevent HF.


Assuntos
Antioxidantes , Insuficiência Cardíaca , Adulto , Humanos , Inquéritos Nutricionais , Estudos Transversais , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/prevenção & controle , Dieta
6.
Phytomedicine ; 128: 155557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Trombospondina 1 , Animais , Humanos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Endotélio Vascular/efeitos dos fármacos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
7.
World J Surg ; 48(3): 631-641, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38353413

RESUMO

BACKGROUND: TiLOOP bra has been used for over 15 years, however, evidence regarding its safety in implant-based breast reconstruction (IBBR) for patients with breast cancer after mastectomy is still limited. We performed this meta-analysis to evaluate its risks and benefits in IBBR comparing with other meshes. METHODS: Electronic databases were searched to identify relevant studies comparing postoperative complications between TiLOOP bra and other reconstruction techniques in IBBR with or without meshes. We also compared patient satisfaction in physical well-being between two groups. Risk ratios (RRs) and mean differences with 95% confidence interval (CI) were calculated. RESULTS: Seven studies representing 1203 cases were analyzed. Compared with other meshes, the use of TiLOOP bra significantly reduced the risk of infection (RR = 0.53, 95% CI, 0.32-0.86), seroma (RR = 0.21, 95% CI, 0.07-0.61), red breast syndrome (RR = 0.10, 95% CI, 0.02-0.45), and capsular contracture (RR = 0.20, 95% CI, 0.05-0.75). Patient satisfaction in physical well-being was comparable between two groups. CONCLUSIONS: TiLOOP bra in IBBR has a favored safety profile over other meshes, which significantly reduced postoperative complication risk and did not affect patient satisfaction. Although prospective well-designed controlled studies are still warranted, TiLOOP bra is safe and reliable at present.


Assuntos
Implantes de Mama , Neoplasias da Mama , Mamoplastia , Humanos , Feminino , Neoplasias da Mama/cirurgia , Estudos Prospectivos , Mastectomia , Mamoplastia/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/cirurgia
8.
Int Immunopharmacol ; 125(Pt A): 111079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149576

RESUMO

Sepsis is a life-threatening organ dysfunction associated with macrophage overactivation. Targeted therapy against macrophages is considered a promising strategy for sepsis treatment. Mollugin (MLG), a compound extracted from traditional Chinese medicine Rubia cordifolia L., possesses anti-tumor and anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effects and mechanisms of MLG in macrophages and its therapeutic role in CLP-induced sepsis in mice. The results demonstrated that MLG downregulated the inflammatory response induced by LPS or tumor necrosis factor α (TNF-α) in macrophages. Mechanistically, MLG suppressed the phosphorylation of TAK1, the upstream modulator of IKKα/ß and MAPKs, thereby inhibiting the pro-inflammatory signaling transduction of NF-κB and MAPKs. Additionally, MLG also activated the Nrf2 antioxidant pathway, reducing intracellular reactive oxygen species. CETSA and molecular docking analyses revealed that MLG could effectively bind to TAK1 and Keap1, which may be involved in the inhibition of TAK1- NF-κB/MAPKs and activation of Nrf2 mediated by MLG. Animal study demonstrated that MLG ameliorated inflammatory injury of lung and liver in CLP-induced sepsis mice probably by reducing the levels of pro-inflammatory cytokines. Therefore, our study suggests that bi-directional roles of MLG in improving sepsis via blocking the TAK1-NF-κB/MAPKs and activating Nrf2 pathways, indicating its potential as a promising candidate drug for sepsis treatment.


Assuntos
NF-kappa B , Sepse , Camundongos , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/efeitos adversos , Sepse/tratamento farmacológico , Sepse/metabolismo , Lipopolissacarídeos/farmacologia
9.
Biochem Pharmacol ; 218: 115854, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863324

RESUMO

Ribonucleotide reductase (RR) is a rate-limiting enzyme that facilitates DNA replication and repair by reducing nucleotide diphosphates (NDPs) to deoxyribonucleotide diphosphates (dNDPs) and is thereby crucial for cell proliferation and cancer development. The E2F family of transcription factors includes key regulators of gene expression involved in cell cycle control. In this study, E2F8 expression was significantly increased in most cancer tissues of lung adenocarcinoma (LUAD) patients and was correlated with the expression of RRM2 through database and clinical samples analysis. The protein expression of E2F8 and RRM2 were positively correlated with tumor-node-metastasis (TNM) pathological stage, and high expression of E2F8 and RRM2 predicted a low 5-year overall survival rate in LUAD patients. Overexpression and knockdown experiments showed that E2F8 was essential for LUAD cell proliferation, DNA synthesis, and cell cycle progression, which were RRM2-dependent. Reporter gene, ChIP-qPCR, and DNA pulldown-Western blot assays indicated that E2F8 activated the transcription of the RRM2 gene by directly binding with the RRM2 promoter in LUAD cells. Previous studies indicated that inhibition of WEE1 kinase can suppress the phosphorylation of CDK1/2 and promote the degradation of RRM2. We further showed here that the combination of E2F8 knockdown with MK-1775, an inhibitor of WEE1 being evaluated in clinical trials, synergistically suppressed proliferation and promoted apoptosis of LUAD cells in vitro and in vivo. Thus, this study reveals a novel role of E2F8 as a proto-oncogenic transcription activator by activating RRM2 expression in LUAD, and targeting both the transcription and degradation mechanisms of RRM2 could produce a synergistic inhibitory effect for LUAD treatment in addition to conventional inhibition of RR enzyme activity.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , DNA , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo
10.
J Breast Cancer ; 26(4): 363-377, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37565929

RESUMO

PURPOSE: PIK3CA and TP53 are the most prevalently mutated genes in breast cancer (BC). Previous studies have indicated an association between concomitant PIK3CA/TP53 mutations and shorter disease-free survival. As its clinical utility remains largely unknown, we aimed to analyze the prognostic and predictive roles of this co-mutation. METHODS: We retrospectively analyzed patients who were diagnosed with BC at Guangdong Provincial People's Hospital (GDPH) who underwent next-generation sequencing. The correlation of concomitant PIK3CA/TP53 mutations with clinicopathological and mutational characteristics, and neoadjuvant systemic therapy (NST) responses was analyzed. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset was used to verify associations between concurrent mutations and survival outcomes. RESULTS: In the GDPH cohort, concomitant PIK3CA/TP53 mutations were associated with more aggressive phenotypes, including human epidermal growth factor receptor 2 positive status, hormone receptor negative status, high Ki-67 expression, high histological grade, advanced TNM stage, and additional genetic alterations. Co-mutations also portended a worse response to NST, especially taxane-containing regimens, when compared with the TP53 mutant alone (odds ratio, 3.767; 95% confidence interval, 1.205-13.087; p = 0.028). A significant association was observed between concomitant PIK3CA/TP53 mutations and poor survival outcomes in the METABRIC cohort. CONCLUSION: Concomitant PIK3CA/TP53 mutations not only suggested unfavorable features and poor prognosis in BC but also conferred less benefit to NST than TP53 mutations alone.

11.
Kaohsiung J Med Sci ; 39(10): 978-988, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574908

RESUMO

Oral tongue squamous cell carcinoma (OTSCC) is a malignant tumor. Recently, studies have found that adenylate cyclase 6 (ADCY6) plays a pivotal role in many lethal tumors formation processes. The role of ADCY6 in OTSCC remains unknown. The expression of ADCY6 in OTSCC tissue samples was detected. The clinical significance of ADCY6 in OTSCC was analyzed by statistical methods. OTSCC cell lines were selected to analyze the biological function of ADCY6. Meanwhile, the effect of ADCY6 on the growth of OTSCC in vivo was explored using subcutaneous tumorigenesis assay. WB assay was used to detect the underlying signaling pathway. Cell function recovery test used to investigate the mechanism of ADCY6-promoting OTSCC malignant biological behavior via Hippo signaling pathway. We report that ADCY6 was obviously downregulated in OTSCC tissue samples and cell lines. Importantly, lower expression of ADCY6 indicates a poorer prognosis in patients with OTSCC, and its expression is significantly correlated with TNM stage and tumor size. Functionally, forced expression of ADCY6 can significantly inhibit the proliferation, migration, invasion, and promote apoptosis of OTSCC cells. Mechanistically, we demonstrated that ADCY6 upregulation impaired Hippo signaling pathway to reduce the malignant biological behavior of OTSCC. Generally, our findings suggest that ADCY6 suppressed Hippo signaling pathway to regulate malignant biological behavior in OTSCC, which provide new cues for further exploring the mechanism of occurrence and development of OTSCC.

12.
Oncogene ; 42(35): 2641-2654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500797

RESUMO

Transcription factors (TFs) regulate the expression of genes responsible for cell growth, differentiation, and responses to environmental factors. In this study, we demonstrated that signal-induced proliferation-associated 1 (SIPA1), known as a Rap-GTPase-activating protein, bound DNA and served as a TF. Importin ß1 was found to interact with SIPA1 upon fibronectin treatment. A TGAGTCAB motif was recognized and bound by DNA-binding region (DBR) of SIPA1, which was confirmed by electrophoretic mobility shift assay. SIPA1 regulated the transcription of multiple genes responsible for signal transduction, DNA synthesis, cell adhesion, cell migration, and so on. Transcription of fibronectin 1, which is crucial for cell junction and migration of triple-negative breast cancer (TNBC) cells, was regulated by SIPA1 in a DBR-dependent manner both in vivo and in vitro. Furthermore, single-cell transcriptome sequencing analysis of specimens from a metastatic TNBC patient revealed that SIPA1 was highly expressed in metastatic TNBC. Hence, this study demonstrated that SIPA1 served as a TF, promoting TNBC migration, invasion, and metastasis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Fibronectinas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo
13.
Exp Clin Transplant ; 21(3): 275-278, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36987803

RESUMO

Scopulariopsis is a species of Aspergillus from the Microascaceae family. It has rarely been reported as a cause of human-borne infection. Here, we describe a 40-year-old female patient who had an invasive pulmonary Scopulariopsisinfection following bilateral lung transplant. During her routine follow-up posttransplant, new nodules were found on chest computed tomography imaging, bronchoalveolar lavage fluid cultures grew filamentous fungi, and lung biopsy was positive for Scopulariopsis. The patient had described a generalized weakness and fatigue for several weeks without cough or chest-related symptoms. After the patient received antifungal treatment, the nodules gradually disappeared, and she improved with good tolerance and without any adverse events. This was a rare case of proven invasive pulmonary Scopulariopsis infection in a lung transplant recipient that caused local disease and systemic infection, which we further analyzed by conducting a literature review. Ourreport can increase the current understanding pertaining to the treatment of a rare and lethal fungal opportunistic infection in immunocompromised humans.


Assuntos
Micoses , Scopulariopsis , Humanos , Feminino , Adulto , Transplantados , Micoses/diagnóstico , Pulmão/diagnóstico por imagem , Pulmão/patologia , Antifúngicos/uso terapêutico
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122649, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963221

RESUMO

We proposed a rapid and ratiometric fluorescent detection method for hypochlorite by glutathione functionalized molybdenum disulfide quantum dots (G-MoS2 QDs). The G-MoS2 QDs were obtained through a hydrothermal method and the maximum fluorescence intensity was obtained at 430 nm under excitation of 360 nm. The fluorescence of G-MoS2 QDs at 430 nm can be weakened by curcumin through the inner filter effect, meanwhile the fluorescence of curcumin at 540 nm appeared. Hypochlorite can fast oxidize curcumin and weaken the inner filter effect, thus the fluorescence of curcumin at 540 nm decreased and the fluorescence of G-MoS2 QDs at 430 nm increased. This process takes only 30 s at room temperature. This is the rationale behind our rapid ratiometric fluorescent detection model for hypochlorite. Two linear detection ranges for hypochlorite are obtained with concentration from 1 to 20 µM and 20 to 30 µM, the limit of detection (LOD) was 11.5 nM. The standard spike recovery tests on milk and tap water samples showed satisfactory results, which extended the application of G-MoS2 QDs in the field of ratiometric fluorescence detection assays.


Assuntos
Curcumina , Pontos Quânticos , Molibdênio , Ácido Hipocloroso , Corantes Fluorescentes , Glutationa , Espectrometria de Fluorescência/métodos , Limite de Detecção
15.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499561

RESUMO

Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral , Comunicação Celular , Resistência a Medicamentos
16.
Thorac Cancer ; 13(24): 3441-3450, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305094

RESUMO

BACKGROUND: Both TP53 mutation and MYC amplification indicate poor outcomes in breast cancer (BC), but the clinical values of concurrent TP53 and MYC alterations have not been well-characterized. METHODS: A total of 494 BC patients diagnosed at Guangdong Provincial People's Hospital (GDPH) were retrospectively analyzed. Genomic alterations were determined using next-generation sequencing. Survival analysis was applied to assess the effects of genetic alterations on relapse-free survival. The prognosis was verified based on 1405 patients from METABRIC cohort. Additionally, we used logistic regression to identify the factors associated with pathological complete response (pCR) after neoadjuvant chemotherapy. RESULTS: In GDPH cohort, patients with TP53/MYC co-alteration exhibited higher grade and stage, more positive HER2 status and higher Ki67 levels, but less luminal A subtypes. They also had more mutations in genes involved in ERBB and TGF-ß signaling pathways, as well as exclusive FANCG/CDKN2B/QKI copy number amplifications and SUFU/HIST3H3/ERCC4/JUN/BCR mutations. Concurrent TP53 and MYC alterations independently increased hazards of relapse (HR, 5.425; 95% CI: 2.019-14.579; p < 0.001). They maintained independent significance for relapse-free (HR, 1.310; 95% CI: 1.012-1.697; p = 0.041) and overall survival (HR, 1.373; 95% CI: 1.093-1.725; p = 0.006) in METABRIC cohort. Among the 81 patients receiving chemotherapy, TP53 mutation (OR, 5.750; 95% CI: 1.553-25.776; p = 0.013) and earlier stage (OR, 0.275; 95% CI 0.088-0.788; p = 0.020) were associated with pCR, while the co-alteration did not serve as an independent predictor (p = 0.199). CONCLUSIONS: TP53/MYC co-alteration was associated with distinct clinicopathological and genomic features. They also conferred unfavorable prognosis in BC patients, and did not improve pCR after neoadjuvant chemotherapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Prognóstico , Mutação , Genômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteína Supressora de Tumor p53/genética
17.
Angew Chem Int Ed Engl ; 61(39): e202209463, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35922882

RESUMO

Bloom syndrome protein (BLM) is a conserved RecQ family helicase involved in the maintenance of genome stability. BLM has been widely recognized as a genome "caretaker" that processes structured DNA. In contrast, our knowledge of how BLM behaves on single-stranded (ss) DNA is still limited. Here, we demonstrate that BLM possesses the intrinsic ability for phase separation and can co-phase separate with ssDNA to form dynamically arrested protein/ssDNA co-condensates. The introduction of ATP potentiates the capability of BLM to condense on ssDNA, which further promotes the compression of ssDNA against a resistive force of up to 60 piconewtons. Moreover, BLM is also capable of condensing replication protein A (RPA)- or RAD51-coated ssDNA, before which it generates naked ssDNA by dismantling these ssDNA-binding proteins. Overall, our findings identify an unexpected characteristic of a DNA helicase and provide a new angle of protein/ssDNA co-condensation for understanding the genomic instability caused by BLM overexpression under diseased conditions.


Assuntos
Síndrome de Bloom , RecQ Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Síndrome de Bloom/genética , DNA , Reparo do DNA , DNA de Cadeia Simples , Instabilidade Genômica , Humanos , RecQ Helicases/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
18.
Sci Rep ; 12(1): 10658, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739158

RESUMO

Breast cancer (BC) is characterized by high morbidity. Mitochondrial ribosomal protein (MRP) family participates in mitochondrial energy metabolism, underlying BC progression. This study aims to analyze the expression and prognosis effect of the MRP genes in BC patients. GEPIA2, UALCAN, cBioPortal, and MethSurv were used to demonstrate the differential expression, genomic alteration profiles, and DNA methylation of the MRP gene family in BC. Functional enrichment analysis and protein-protein interaction network construction were performed to understand the biological function. Based on 1056 TCGA samples with the transcriptional level of MRPs, Kaplan-Meier curves, Cox, and LASSO regression were applied to explore their prognostic effects. 12 MRPs were upregulated in BC, which were associated with gene amplification and DNA methylation. MRP genetic alteration occurred in 42% of BC patients, and amplification was the most frequent variation. Functioning in its entirety, the MRP family was involved in mitochondrial translational termination, elongation, translation, and poly(A) RNA binding. High expression of MRPL1, MRPL13, MRPS6, MRPS18C, and MRPS35, as well as low levels of MRPL16, and MRPL40 significantly indicated poor prognosis in BC patients. Thus, a novel MRP-based prognostic nomogram was established and verified with favorable discrimination and calibration. We not only provided a thorough expression and prognosis analysis of the MRP family in BC patients but also constructed an MRP-based prognostic nomogram. It was suggested that MRPs acted as biomarkers in individualized risk prediction and may serve as potential therapeutic targets in BC patients.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Prognóstico , Ribonucleoproteínas/genética , Proteínas Ribossômicas/genética
19.
J Colloid Interface Sci ; 620: 94-106, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421756

RESUMO

Treatment failure is one of the main lethal causes of human triple negative breast cancer (TNBC) patients due to inefficient drug administration. The present study demonstrated the development of functional microporous organic polymers (MOPs) as a potential drug carrier and its controlled release. Due to the existence of abundant pores and high surface area, MOPs have promoted the high drug payloads, facilitating prolonged retention time and improved drug release. Herein, porous organic polymer has been fabricated via knitting strategy using the carbonyl bridged external crosslinker. Utilizing the imine chemistry, post-functionalization at the bridging carbon with the diamine resulted in the functional porous framework which had been further modified with single stranded DNA (ssDNA). Due to the conjugated structure, the designed material incorporates the strong blue fluorescence that assists in bio-imaging. In short, the inherent features of hypercrosslinked microporous polymers nanospheres (HMPNs) enabled the high encapsulation of Epirubicin (EPI) and its controlled release in TNBC cell lines (SUM-159 and MDA-MB-231) to inhibit cancer cells proliferation. We anticipate that the further development in functionalization of hypercrosslinked polymers may lead to a breakthrough in biomedical applications.


Assuntos
Nanosferas , Neoplasias de Mama Triplo Negativas , Proliferação de Células , Preparações de Ação Retardada/uso terapêutico , Humanos , Polímeros/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Cell Death Dis ; 13(3): 228, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277481

RESUMO

Transcription factors, cofactors, chromatin regulators, and transcription apparatuses interact with transcriptional regulatory elements, including promoters, enhancers, and super-enhancers (SEs), to coordinately regulate the transcription of target genes and thereby control cell behaviors. Among these transcriptional regulatory components and related elements, SEs often play a central role in determining cell identity and tumor initiation and progression. Therefore, oncogenic SEs, which are generated within cancer cells in oncogenes and other genes important in tumor pathogenesis, have emerged as attractive targets for novel cancer therapeutic strategies in recent years. Herein, we review the identification, formation and activation modes, and regulatory mechanisms for downstream genes and pathways of oncogenic SEs. We also review the therapeutic strategies and compounds targeting oncogenic SEs in colorectal cancer and other malignancies.


Assuntos
Neoplasias Colorretais , Sequências Reguladoras de Ácido Nucleico , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Elementos Facilitadores Genéticos/genética , Humanos , Oncogenes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA