Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38297848

RESUMO

Objective:To investigate long-term auditory changes and characteristics of Alport syndrome(AS) patients with different degrees of renal injury. Methods:Retrospectively analyzing clinical data of patients diagnosed AS from January 2007 to September 2022, including renal pathology, genetic detection and hearing examination. A long-term follow-up focusing on hearing and renal function was conducted. Results:This study included 70 AS patients, of which 33(25 males, 8 females, aged 3.4-27.8 years) were followed up, resulting in a loss rate of 52.9%.The follow-up period ranged from 1.1to 15.8 years, with 16 patients followed-up for over 10 years. During the follow-up, 10 patients presenting with hearing abnormalities at the time of diagnosis of AS had progressive hearing loss, and 3 patients with new hearing abnormalities were followed up, which appeared at 5-6 years of disease course. All of which were sensorineural deafness. While only 3 patients with hearing abnormalities among 13 patients received hearing aid intervention. Of these patients,7 developed end-stage renal disease(ESRD), predominantly males (6/7). The rate of long-term hearing loss was significantly different between ESRD group and non-ESRD group(P=0.013). There was no correlation between the progression of renal disease and long-term hearing level(P>0.05). kidney biopsies from 28 patients revealed varying degrees of podocyte lesion and uneven thickness of basement membrane. The severity of podocyte lesion was correlated with the rate of long-term hearing loss(P=0.048), and there was no correlation with the severity of hearing loss(P>0.05). Among 11 cases, theCOL4A5mutationwas most common (8 out of 11), but there was no significant correlation between the mutation type and hearing phenotype(P>0.05). Conclusion:AS patients exhibit progressive hearing loss with significant heterogeneity over the long-term.. THearing loss is more likely to occur 5-6 years into the disease course. Hearing abnormalities are closely related to renal disease status, kidney tissue pathology, and gene mutations, emphasizing the need for vigilant long-term hearing follow-up and early intervention.


Assuntos
Surdez , Perda Auditiva , Falência Renal Crônica , Nefrite Hereditária , Masculino , Criança , Feminino , Humanos , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Estudos Retrospectivos , Rim , Perda Auditiva/genética , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Mutação
2.
CNS Neurosci Ther ; 30(3): e14430, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37650156

RESUMO

AIMS: Previous studies have indicated that smoking is linked to an increased risk of developing schizophrenia, and that individuals with schizophrenia are more prone to engaging in antisocial behavior. However, the causal effects of smoking behaviors on antisocial behavior and the potential mediating role of schizophrenia remains largely unclear. METHODS: In the present study, using the summary data from genome wide association studies of smoking phenotypes (N = 323,386-805,431), schizophrenia (Ncases = 53,386, Ncontrols = 77,258), and antisocial behavior (N = 85,359), we assessed bidirectional causality between smoking phenotypes and schizophrenia by the Mendelian randomization (MR) approach. Using a two-step MR approach, we further examined whether causal effects of smoking phenotypes/schizophrenia on antisocial behavior were mediated by schizophrenia/smoking phenotypes. RESULTS: The results showed that smoking initiation (SmkInit) and age of smoking initiation (AgeSmk) causally increase the risk of schizophrenia (SmkInit: OR = 2.06, 95% CI = 1.77-2.39, p = 4.36 × 10-21 ; AgeSmk: OR = 0.32, 95% CI = 0.16-0.62, p = 8.11 × 10-4 , Bonferroni corrected). However, there was no causal effect that liability to schizophrenia leads to smoking phenotypes. MR evidence also revealed causal influences of SmkInit and the amount smoked (CigDay) on antisocial behavior (SmkInit: OR = 1.28, 95% CI = 1.17-1.41, p = 2.53 × 10-7 ; CigDay: OR = 1.16, 95% CI = 1.06-1.27, p = 1.60 × 10-3 , Bonferroni corrected). Furthermore, the mediation analysis indicated that the relationship between SmkInit and antisocial behavior was partly mediated by schizophrenia (mediated proportion = 6.92%, 95% CI = 0.004-0.03, p = 9.66 × 10-3 ). CONCLUSIONS: These results provide compelling evidence for taking smoking interventions as a prevention strategy for schizophrenia and its related antisocial behavior.


Assuntos
Esquizofrenia , Fumar , Humanos , Fumar/efeitos adversos , Fumar/genética , Análise da Randomização Mendeliana , Transtorno da Personalidade Antissocial/epidemiologia , Transtorno da Personalidade Antissocial/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Front Pediatr ; 9: 732973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805037

RESUMO

Objectives: The present study aimed to assess the expression of caspase-1 and caspase-1-dependent processing of cytokines, such as interleukin (IL)-1ß and IL-18, in the middle ear effusion of children with otitis media with effusion (OME) in order to identify the potential role of inflammasomes in OME. Methods: This study included 29 children scheduled for myringotomy with the insertion of tympanostomy tubes due to OME. Middle ear effusion (MEE) was collected during the surgery. Caspase-1, IL-1ß, and IL-18 were assayed using enzyme-linked immunosorbent assay kits. The levels were compared between those with mucoid and serous MEE and those with and without a history of ventilation tube insertion. Results: Caspase-1, IL-1ß, and IL-18 were detected in all samples. The caspase-1, IL-1ß, and IL-18 levels did not significantly differ between mucoid samples and serous samples. No statistical significances were discovered in caspase-1, IL-1ß, and IL-18 levels between with and without a history of ventilation tube groups. There was a significant negative correlation between IL-1ß and IL-18 and the duration of OME (p < 0.05). However, no significant correlation was found between caspase-1 and disease duration. Conclusions: Inflammasomes may participate in the inflammatory process of OME. IL-1ß and IL-18 levels in the MEE decreased over time.

4.
Proc Natl Acad Sci U S A ; 115(14): 3686-3691, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555771

RESUMO

Reducing premature mortality associated with age-related chronic diseases, such as cancer and cardiovascular disease, is an urgent priority. We report early results using genomics in combination with advanced imaging and other clinical testing to proactively screen for age-related chronic disease risk among adults. We enrolled active, symptom-free adults in a study of screening for age-related chronic diseases associated with premature mortality. In addition to personal and family medical history and other clinical testing, we obtained whole-genome sequencing (WGS), noncontrast whole-body MRI, dual-energy X-ray absorptiometry (DXA), global metabolomics, a new blood test for prediabetes (Quantose IR), echocardiography (ECHO), ECG, and cardiac rhythm monitoring to identify age-related chronic disease risks. Precision medicine screening using WGS and advanced imaging along with other testing among active, symptom-free adults identified a broad set of complementary age-related chronic disease risks associated with premature mortality and strengthened WGS variant interpretation. This and other similarly designed screening approaches anchored by WGS and advanced imaging may have the potential to extend healthy life among active adults through improved prevention and early detection of age-related chronic diseases (and their risk factors) associated with premature mortality.


Assuntos
Doença/genética , Predisposição Genética para Doença , Processamento de Imagem Assistida por Computador/métodos , Mutação , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doença/classificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Medição de Risco , Análise de Sequência de RNA , Adulto Jovem
5.
Cancer Discov ; 4(11): 1290-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182153

RESUMO

UNLABELLED: Through unbiased metabolomics, we identified elevations of the metabolite 2-hydroxyglutarate (2HG) in renal cell carcinoma (RCC). 2HG can inhibit 2-oxoglutaratre (2-OG)-dependent dioxygenases that mediate epigenetic events, including DNA and histone demethylation. 2HG accumulation, specifically the d enantiomer, can result from gain-of-function mutations of isocitrate dehydrogenase (IDH1, IDH2) found in several different tumors. In contrast, kidney tumors demonstrate elevations of the l enantiomer of 2HG (l-2HG). High-2HG tumors demonstrate reduced DNA levels of 5-hydroxymethylcytosine (5hmC), consistent with 2HG-mediated inhibition of ten-eleven translocation (TET) enzymes, which convert 5-methylcytosine (5mC) to 5hmC. l-2HG elevation is mediated in part by reduced expression of l-2HG dehydrogenase (L2HGDH). L2HGDH reconstitution in RCC cells lowers l-2HG and promotes 5hmC accumulation. In addition, L2HGDH expression in RCC cells reduces histone methylation and suppresses in vitro tumor phenotypes. Our report identifies l-2HG as an epigenetic modifier and putative oncometabolite in kidney cancer. SIGNIFICANCE: Here, we report elevations of the putative oncometabolite l-2HG in the most common subtype of kidney cancer and describe a novel mechanism for the regulation of DNA 5hmC levels. Our findings provide new insight into the metabolic basis for the epigenetic landscape of renal cancer.


Assuntos
Carcinoma de Células Renais/metabolismo , Glutaratos/metabolismo , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Epigênese Genética , Células HEK293 , Humanos , Neoplasias Renais/genética , RNA Mensageiro/metabolismo
6.
PLoS One ; 9(8): e105181, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133529

RESUMO

Recent studies suggest that periodontal disease and type 2 diabetes mellitus are bi-directionally associated. Identification of a molecular signature for periodontitis using unbiased metabolic profiling could allow identification of biomarkers to assist in the diagnosis and monitoring of both diabetes and periodontal disease. This cross-sectional study identified plasma and salivary metabolic products associated with periodontitis and/or diabetes in order to discover biomarkers that may differentiate or demonstrate an interaction of these diseases. Saliva and plasma samples were analyzed from 161 diabetic and non-diabetic human subjects with a healthy periodontium, gingivitis and periodontitis. Metabolite profiling was performed using Metabolon's platform technology. A total of 772 metabolites were found in plasma and 475 in saliva. Diabetics had significantly higher levels of glucose and α-hydroxybutyrate, the established markers of diabetes, for all periodontal groups of subjects. Comparison of healthy, gingivitis and periodontitis saliva samples within the non-diabetic group confirmed findings from previous studies that included increased levels of markers of cellular energetic stress, increased purine degradation and glutathione metabolism through increased levels of oxidized glutathione and cysteine-glutathione disulfide, markers of oxidative stress, including increased purine degradation metabolites (e.g. guanosine and inosine), increased amino acid levels suggesting protein degradation, and increased ω-3 (docosapentaenoate) and ω-6 fatty acid (linoleate and arachidonate) signatures. Differences in saliva between diabetic and non-diabetic cohorts showed altered signatures of carbohydrate, lipid and oxidative stress exist in the diabetic samples. Global untargeted metabolic profiling of human saliva in diabetics replicated the metabolite signature of periodontal disease progression in non-diabetic patients and revealed unique metabolic signatures associated with periodontal disease in diabetics. The metabolites identified in this study that discriminated the periodontal groups may be useful for developing diagnostics and therapeutics tailored to the diabetic population.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Doenças Periodontais/metabolismo , Saliva/metabolismo , Adolescente , Adulto , Estudos Transversais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Gengivite/metabolismo , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Periodontite/metabolismo , Purinas/metabolismo , Adulto Jovem
7.
Pediatr Pulmonol ; 49(5): 463-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23847148

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a multi-system disease affecting multiple organs and cells besides the respiratory system. Metabolomic profiling allows simultaneous detection of biochemicals originating from cells, organs, or exogenous origin that may be valuable for monitoring of disease severity or in diagnosis. AIM: We hypothesized that metabolomics using serum from children would differentiate CF from non-CF lung disease subjects and would provide insight into metabolism in CF. METHODS: Serum collected from children with CF (n = 31) and 31 age and gender matched children with other lung diseases was used for metabolomic profiling by gas- and liquid-chromatography. Relative concentration of metabolites was compared between the groups using partial least square discriminant analyses (PLS-DA) and linear modeling. RESULTS: A clear separation of the two groups was seen in PLS-DA. Linear model found that among the 459 detected metabolites 92 differed between CF and non-CF. These included known biochemicals in lipid metabolism, oxidants, and markers consistent with abnormalities in bile acid processing. Bacterial metabolites were identified and differed between the groups indicating intestinal dysbiosis in CF. As a novel finding several pathways were markedly different in CF, which jointly point towards decreased activity in the ß-oxidation of fatty acids. These pathways include low ketone bodies, low medium chain carnitines, elevated di-carboxylic acids and decreased 2-hydroxybutyrate from amino acid metabolism in CF compared to non-CF. CONCLUSION: Serum metabolomics discriminated CF from non-CF and show altered cellular energy metabolism in CF potentially reflecting mitochondrial dysfunction. Future studies are indicated to examine their relation to the underlying CF defect and their use as biomarkers for disease severity or for cystic fibrosis transmembrane regulator (CFTR) function in an era of CFTR modifying drugs.


Assuntos
Fibrose Cística/metabolismo , Metabolismo Energético/fisiologia , Metaboloma , Adolescente , Aminoácidos/metabolismo , Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Carnitina/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatografia Gasosa , Cromatografia Líquida , Fibrose Cística/sangue , Fibrose Cística/fisiopatologia , Ácidos Dicarboxílicos/sangue , Análise Discriminante , Disbiose/sangue , Ácidos Graxos/metabolismo , Feminino , Humanos , Hidroxibutiratos/sangue , Lactente , Corpos Cetônicos/sangue , Modelos Lineares , Metabolismo dos Lipídeos/fisiologia , Masculino , Metabolômica , Microbiota/fisiologia , Oxidantes/metabolismo
8.
Mov Disord ; 28(12): 1653-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23873789

RESUMO

Parkinson's disease (PD) biomarkers are needed to enhance therapeutics research and to understand PD pathogenesis. Methods that simultaneously measure hundreds of small molecular-weight compounds-metabolomic analysis-"fingerprint" disease-specific alterations in individual compounds or metabolic pathways. Beyond a nontargeted search for PD biomarkers, we hypothesized that PD cerebrospinal fluid would show increased formation of the excitotoxin 3-hydroxykynurenine and diminished concentration of the antioxidant glutathione. Cerebrospinal fluid was collected at <4 hours postmortem from 48 pathologically-verified PD subjects and 57 comparably-aged controls. Assays involved ultra-high-performance liquid and gas chromatography linked to mass spectrometry. We used univariate techniques to determine fold-changes in concentrations of biochemicals; false-discovery rates were calculated to exclude spurious findings. Data was modeled using a Support Vector Machine for analyzing compounds selected by Welch's t test. Classification accuracy was determined by cross-validation. Of 243 structurally-identified biochemicals,19 compounds differentiated PD from controls at a 20% false-discovery level. In PD, mean 3-hydroxykynurenine concentration was increased by one-third, and mean oxidized glutathione was decreased by 40% (for each, P < .01). Four of the 19 compounds differentiating PD from controls were N-acetylated amino acids, suggesting a generalized alteration in N-acetylation activity. The Support Vector Machine classification model distinguished between groups at 83% sensitivity and 91% specificity for the learning data, and at 65% and 79% from cross-validation. In this study, the first for metabolomic profiling of PD cerebrospinal fluid, we found several novel biomarkers and offer new directions for recognizing disease-specific biochemical indicators. The findings support involvement of excitotoxicity and oxidative stress in the pathogenesis of PD.


Assuntos
Cinurenina/análogos & derivados , Estresse Oxidativo/fisiologia , Doença de Parkinson/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Feminino , Glutationa/líquido cefalorraquidiano , Humanos , Cinurenina/líquido cefalorraquidiano , Masculino , Espectrometria de Massas , Metabolômica , Pessoa de Meia-Idade , Sensibilidade e Especificidade
9.
Biosens Bioelectron ; 41: 123-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22944024

RESUMO

Quantitative protein bioanalysis in complex biological fluids presents considerable challenges in biological studies and medical diagnosis. The major obstacles are the background signals from the biological fluids and sensors themselves. Because the europium ion (Eu (III)) has the much longer fluorescence lifetime (1 ms) than that of the background (5 ns), time-resolved method can be widely used to eliminate the biological background. So, we report here an aptamer-based sensor (aptasensor) for time-resolved fluorescence assay of adenosine deaminase (ADA). This aptasensor employs two oligonucleotides labeled with DIG and biotin, respectively. The DNA1 (an oligonucleotide modified with biotin) is immobilized at a streptavidin-modified plate surface via the biotin-avidin bridge, and the DIG which is modified on the DNA2 serves as an affinity tag for the Eu(3+) labeled anti-DIG (Eu-anti-DIG) binding. If the adenosine is binding with DNA1, it will make the DNA1 in the closed state with a close-packed tight structure, which forbids the DNA2 approaching. And if the ADA is added into the mixture, the DNA1 unbends, because of the adenosine is transformed to inosine catalyzed by the ADA. Then DNA2 could hybridize with DNA1. Accordingly, the DIG finds Eu-anti-DIG and the Eu-anti-DIG will give a remarkable fluorescent signal. The detection limit of the aptasensor can be lowered to 2 UL(-1), which can meet the clinical requirement of ADA cutoff value (4 UL(-1)). Moreover, we were able to detect ADA in human serum quantitatively. Combined with time-resolved based measurements and aptasensor, this strategy holds great potential in protein analysis.


Assuntos
Adenosina Desaminase/análise , Adenosina Desaminase/química , Técnicas Biossensoriais/instrumentação , DNA/química , Espectrometria de Fluorescência/instrumentação , Adenosina Desaminase/genética , DNA/genética , Ativação Enzimática , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Mol Plant ; 6(2): 369-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239830

RESUMO

Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS(2) platforms. A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced constitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several polyunsaturated fatty acids were more abundant in the hydrated states, suggesting that these compounds likely help maintain membrane fluidity during dehydration. Lastly, S. lepidophylla contained seven unnamed compounds that displayed twofold or greater abundance in dry or rehydrating states, suggesting that these compounds might play adaptive roles in DT.


Assuntos
Secas , Metabolômica , Selaginellaceae/fisiologia , Água/metabolismo , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Metabolismo Energético , Glutationa/metabolismo , Nucleotídeos/metabolismo , Selaginellaceae/metabolismo , Álcoois Açúcares/metabolismo
11.
Int J Cancer ; 130(12): 2791-800, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21732340

RESUMO

Kidney cancer often diagnosed at late stages when treatment options are severely limited. Thus, greater understanding of tumor metabolism leading ultimately to novel approaches to diagnosis is needed. Our laboratory has been utilizing metabolomics to evaluate compounds appearing in kidney cancer patients' biofluids at concentrations different from control patients. Here, we collected urine samples from kidney cancer patients and analyzed them by chromatography coupled to mass spectrometry. Once normalized to control for urinary concentration, samples were analyzed by two independent laboratories. After technical validation, we now show differential urinary concentrations of several acylcarnitines as a function of both cancer status and kidney cancer grade, with most acylcarnitines being increased in the urine of cancer patients and in those patients with high cancer grades. This finding was validated in a mouse xenograft model of human kidney cancer. Biological validation shows carbon chain length-dependent effects of the acylcarnitines on cytotoxicity in vitro, and higher chain length acylcarnitines demonstrated inhibitory effects on NF-κB activation, suggesting an immune modulatory effect of these compounds. Thus, acylcarnitines in the kidney cancer urine may reflect alterations in metabolism, cell component synthesis and/or immune surveillance, and may help explain the profound chemotherapy resistance seen with this cancer. This study shows for the first time the value of a novel class of metabolites which may lead to new therapeutic approaches for cancer and may prove useful in cancer biomarker studies. Furthermore, these findings open up a new area of investigation into the metabolic basis of kidney cancer.


Assuntos
Carnitina/análogos & derivados , Neoplasias Renais/urina , NF-kappa B/biossíntese , Animais , Biomarcadores Tumorais/urina , Carnitina/biossíntese , Carnitina/metabolismo , Carnitina/urina , Linhagem Celular Tumoral , Humanos , Rim , Neoplasias Renais/patologia , Metabolômica , Camundongos , NF-kappa B/metabolismo , Gradação de Tumores , Transplante de Neoplasias , Transplante Heterólogo
12.
Plant Cell ; 23(4): 1231-48, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21467579

RESUMO

Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.


Assuntos
Adaptação Fisiológica , Dessecação , Metabolômica/métodos , Poaceae/metabolismo , Alantoína/metabolismo , Asparagina/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Glutationa/biossíntese , Glicólise , Metaboloma , Nitrogênio/metabolismo , Fenótipo , Rafinose/metabolismo , Tocoferóis/metabolismo , Água
13.
OMICS ; 15(5): 293-303, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21348635

RESUMO

Kidney cancer is the seventh most common cancer in the Western world, its incidence is increasing, and it is frequently metastatic at presentation, at which stage patient survival statistics are grim. In addition, there are no useful biofluid markers for this disease, such that diagnosis is dependent on imaging techniques that are not generally used for screening. In the present study, we use metabolomics techniques to identify metabolites in kidney cancer patients' urine, which appear at different levels (when normalized to account for urine volume and concentration) from the same metabolites in nonkidney cancer patients. We found that quinolinate, 4-hydroxybenzoate, and gentisate are differentially expressed at a false discovery rate of 0.26, and these metabolites are involved in common pathways of specific amino acid and energetic metabolism, consistent with high tumor protein breakdown and utilization, and the Warburg effect. When added to four different (three kidney cancer-derived and one "normal") cell lines, several of the significantly altered metabolites, quinolinate, α-ketoglutarate, and gentisate, showed increased or unchanged cell proliferation that was cell line-dependent. Further evaluation of the global metabolomics analysis, as well as confirmation of the specific potential biomarkers using a larger sample size, will lead to new avenues of kidney cancer diagnosis and therapy.


Assuntos
Biomarcadores Tumorais/urina , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/urina , Neoplasias Renais/patologia , Neoplasias Renais/urina , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/metabolismo , Redes e Vias Metabólicas , Metabolômica , Reprodutibilidade dos Testes
14.
Metabolism ; 60(3): 404-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20423748

RESUMO

The plasma profile of subjects with nonalcoholic fatty liver disease (NAFLD), steatosis, and steatohepatitis (NASH) was examined using an untargeted global metabolomic analysis to identify specific disease-related patterns and to identify potential noninvasive biomarkers. Plasma samples were obtained after an overnight fast from histologically confirmed nondiabetic subjects with hepatic steatosis (n = 11) or NASH (n = 24) and were compared with healthy, age- and sex-matched controls (n = 25). Subjects with NAFLD were obese, were insulin resistant, and had higher plasma concentrations of homocysteine and total cysteine and lower plasma concentrations of total glutathione. Metabolomic analysis showed markedly higher levels of glycocholate, taurocholate, and glycochenodeoxycholate in subjects with NAFLD. Plasma concentrations of long-chain fatty acids were lower and concentrations of free carnitine, butyrylcarnitine, and methylbutyrylcarnitine were higher in NASH. Several glutamyl dipeptides were higher whereas cysteine-glutathione levels were lower in NASH and steatosis. Other changes included higher branched-chain amino acids, phosphocholine, carbohydrates (glucose, mannose), lactate, pyruvate, and several unknown metabolites. Random forest analysis and recursive partitioning of the metabolomic data could separate healthy subjects from NAFLD with an error rate of approximately 8% and separate NASH from healthy controls with an error rate of 4%. Hepatic steatosis and steatohepatitis could not be separated using the metabolomic profile. Plasma metabolomic analysis revealed marked changes in bile salts and in biochemicals related to glutathione in subjects with NAFLD. Statistical analysis identified a panel of biomarkers that could effectively separate healthy controls from NAFLD and healthy controls from NASH. These biomarkers can potentially be used to follow response to therapeutic interventions.


Assuntos
Metaboloma , Metabolômica/métodos , Adulto , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Fígado Gorduroso/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Espectrometria de Massas em Tandem
15.
J Biol Chem ; 285(40): 30516-22, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20675369

RESUMO

Cystic fibrosis (CF) is a life-shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To gain an understanding of the epithelial dysfunction associated with CF mutations and discover biomarkers for therapeutics development, untargeted metabolomic analysis was performed on primary human airway epithelial cell cultures from three separate cohorts of CF patients and non-CF subjects. Statistical analysis revealed a set of reproducible and significant metabolic differences between the CF and non-CF cells. Aside from changes that were consistent with known CF effects, such as diminished cellular regulation against oxidative stress and osmotic stress, new observations on the cellular metabolism in the disease were generated. In the CF cells, the levels of various purine nucleotides, which may function to regulate cellular responses via purinergic signaling, were significantly decreased. Furthermore, CF cells exhibited reduced glucose metabolism in glycolysis, pentose phosphate pathway, and sorbitol pathway, which may further exacerbate oxidative stress and limit the epithelial cell response to environmental pressure. Taken together, these findings reveal novel metabolic abnormalities associated with the CF pathological process and identify a panel of potential biomarkers for therapeutic development using this model system.


Assuntos
Biomarcadores/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Metabolômica , Mucosa Respiratória/metabolismo , Metabolismo dos Carboidratos , Estudos de Coortes , Fibrose Cística/genética , Fibrose Cística/patologia , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Mutação , Pressão Osmótica , Estresse Oxidativo , Nucleosídeos de Purina/genética , Nucleosídeos de Purina/metabolismo , Mucosa Respiratória/patologia
16.
Toxicol Sci ; 118(2): 643-52, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20616209

RESUMO

Ethylene glycol monomethyl ether (EGME) is a widely used industrial solvent known to cause adverse effects to human and other mammals. Organs with high metabolism and rapid cell division, such as testes, are especially sensitive to its actions. In order to gain mechanistic understanding of EGME-induced toxicity, an untargeted metabolomic analysis was performed in rats. Male rats were administrated with EGME at 30 and 100 mg/kg/day. At days 1, 4, and 14, serum, urine, liver, and testes were collected for analysis. Testicular injury was observed at day 14 of the 100 mg/kg/day group only. Nearly 1900 metabolites across the four matrices were profiled using liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-mass spectrometry. Statistical analysis indicated that the most significant metabolic perturbations initiated from the early time points by EGME were the inhibition of choline oxidation, branched-chain amino acid catabolism, and fatty acid ß-oxidation pathways, leading to the accumulation of sarcosine, dimethylglycine, and various carnitine- and glycine-conjugated metabolites. Pathway mapping of these altered metabolites revealed that all the disrupted steps were catalyzed by enzymes in the primary flavoprotein dehydrogenase family, suggesting that inhibition of flavoprotein dehydrogenase-catalyzed reactions may represent the mode of action for EGME-induced toxicity. Similar urinary and serum metabolite signatures are known to be the hallmarks of multiple acyl-coenzyme A dehydrogenase deficiency in humans, a genetic disorder because of defects in primary flavoprotein dehydrogenase reactions. We postulate that disruption of key biochemical pathways utilizing flavoprotein dehydrogenases in conjugation with downstream metabolic perturbations collectively result in the EGME-induced tissue damage.


Assuntos
Flavoproteínas Transferidoras de Elétrons/metabolismo , Inibidores Enzimáticos/toxicidade , Etilenoglicóis/toxicidade , Testículo/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/patologia , Etilenoglicóis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Metabolômica , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Contagem de Espermatozoides , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia
17.
Toxicol Pathol ; 37(4): 521-35, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19458390

RESUMO

Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists such as fenofibrate are used to treat dyslipidemia. Although fenofibrate is considered safe in humans, it is known to cause hepatocarcinogenesis in rodents. To evaluate untargeted metabolic profiling as a tool for gaining insight into the underlying pharmacology and hepatotoxicology, Fischer 344 male rats were dosed with 300 mg/kg/day of fenofibrate for 14 days and the urine and plasma were analyzed on days 2 and 14. A combination of liquid and gas chromatography mass spectrometry returned the profiles of 486 plasma and 932 urinary metabolites. Aside from known pharmacological effects, such as accelerated fatty acid beta-oxidation and reduced plasma cholesterol, new observations on the drug's impact on cellular metabolism were generated. Reductions in TCA cycle intermediates and biochemical evidence of lactic acidosis demonstrated that energy metabolism homeostasis was altered. Perturbation of the glutathione biosynthesis and elevation of oxidative stress markers were observed. Furthermore, tryptophan metabolism was up-regulated, resulting in accumulation of tryptophan metabolites associated with reactive oxygen species generation, suggesting the possibility of oxidative stress as a mechanism of nongenotoxic carcinogenesis. Finally, several metabolites related to liver function, kidney function, cell damage, and cell proliferation were altered by fenofibrate-induced toxicity at this dose.


Assuntos
Fenofibrato/toxicidade , Hipolipemiantes/toxicidade , Fígado/patologia , Metabolômica/métodos , Acidose Láctica/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fenofibrato/administração & dosagem , Cromatografia Gasosa-Espectrometria de Massas , Hipolipemiantes/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade Crônica , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA