Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(2): 125-136, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889101

RESUMO

Exosomal long noncoding RNAs (lncRNA) derived from cancer cells are implicated in various processes, including cancer cell proliferation, metastasis, and immunomodulation. We investigated the role and underlying mechanism of exosome-transmitted lncRNA NEAT1 in the immune escape of multiple myeloma cells from natural killer (NK) cells. Multiple myeloma cells and samples from patients with multiple myeloma were obtained. The effects of multiple myeloma cell-derived exosomes (multiple myeloma exosomes) and exosomal NEAT1 on the functions of NK cells were evaluated using EdU staining, CCK-8, flow cytometry, and ELISA. Chromatin and RNA immunoprecipitation were performed to identify interactions between NEAT1, enhancer of Zeste Homolog 2 (EZH2), and pre-B-cell leukemia transcription factor 1 (PBX1). A xenograft tumor model was constructed to verify the effects of exosomal NEAT1 on tumor growth. qRT-PCR, Western blot analysis, and IHC were conducted to detect related genes. NEAT1 levels were upregulated in multiple myeloma tumor tissues, multiple myeloma cells, and multiple myeloma exosomes. Multiple myeloma exosomes suppressed cell proliferation, promoted apoptosis, reduced natural killer group 2, member D (NKG2D)-positive cells, and the production of TNFα) and interferon-gamma (IFN-γ) in NK cells, whereas NEAT1-silenced exosomes had little effect. NEAT1 silenced PBX1 by recruiting EZH2. PBX1 knockdown abrogated the effects of NEAT1-silenced exosomes on NK and multiple myeloma cells. NEAT1-silenced exosomes inhibited tumor growth in mice, decreased Ki67 and PD-L1, and increased NKG2D, TNFα, and IFNγ in tumor tissues. In summary, multiple myeloma cell-derived exosomal NEAT1 suppressed NK-cell activity by downregulating PBX1, promoting multiple myeloma cell immune escape. This study suggests a potential strategy for treating multiple myeloma. IMPLICATIONS: This study reveals that exosomal NEAT1 regulates EZH2/PBX1 axis to inhibit NK-cell activity, thereby promoting multiple myeloma cell immune escape, which offers a novel therapeutic potential for multiple myeloma.


Assuntos
Exossomos , MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Exossomos/genética , Células Matadoras Naturais , MicroRNAs/genética , Mieloma Múltiplo/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fator de Transcrição 1 de Leucemia de Células Pré-B , RNA Longo não Codificante/genética , Fator de Necrose Tumoral alfa
2.
Int J Clin Exp Pathol ; 8(10): 12845-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26722475

RESUMO

MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica/patologia , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Invasividade Neoplásica/genética , Receptores de Superfície Celular/genética , Regulação para Cima , ATPases Vacuolares Próton-Translocadoras/genética
3.
Acta Pharmacol Sin ; 28(4): 493-502, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17376288

RESUMO

AIM: Angiopoietin-1 (Ang1) and vascular endothelial growth factor A (VEGF) play important roles in vascular formation and maturation, suggesting a combination of these 2 would be a promising therapy for ischemic diseases. So we constructed an adeno-associated virus (AAV) vector, simultaneously encoding human VEGF(165) and Ang1 (AAV-VEGF/Ang1), and investigated its therapeutic effect in a rabbit ischemic hind-limb model. METHODS: Four experimental groups were used to prepare the rabbit ischemic hind-limb model following AAV vectors intramuscular administration as follows: PBS (phosphate buffered solution), AAV-VEGF, AAV-Ang1, AAV-VEGF/Ang1. RESULTS: Eight weeks after administration, human VEGF(165) and Ang1 were detected by RT-PCR, Western blotting and histochemical staining methods in AAV-VEGF/Ang1 transduced muscles. Group AAV-VEGF/Ang1 showed a significantly increased blood-flow recovery in ischemic hind-limbs compared with the other groups. Histological staining for alkaline phosphatase showed that capillary density of group AAV-VEGF/Ang1 or AAV-VEGF was significantly higher than that of group PBS or AAV-Ang1. Histological immunostaining for smooth muscle alpha-actin (alpha-SMA) revealed that group AAV-VEGF/Ang1 had the highest density of alpha-SMA-positive vessels compared with the other groups. Vascular leakage, one of the major adverse effects induced by VEGF, was very severe in group AAV-VEGF, but the permeability was obviously reduced when VEGF was co-expressed with Ang1 in group AAV-VEGF/Ang1. CONCLUSION: AAV vectors can simultaneously encode 2 proteins which can be efficiently and stably co-expressed in transduced tissues. AAV-mediated VEGF and Ang1 gene transfer enhances neovascularization, prevents capillary leakage, and improves blood flow in a rabbit hind-limb ischemic model. These findings suggest that intramuscular administration of AAV-VEGF/Ang1 may be useful in the treatment of ischemic diseases.


Assuntos
Angiopoietina-1/biossíntese , Angiopoietina-1/genética , Dependovirus/genética , Vetores Genéticos/genética , Membro Posterior/irrigação sanguínea , Neovascularização Fisiológica/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Membro Posterior/fisiologia , Humanos , Isquemia/patologia , Masculino , Plasmídeos/genética , Coelhos , Fluxo Sanguíneo Regional/genética , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA