Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767771

RESUMO

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Assuntos
Isquemia Encefálica , Mitocôndrias , Neurônios , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuína 1 , Sirtuína 3 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Mitocôndrias/metabolismo , Masculino , Sirtuína 3/metabolismo , Sirtuína 3/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Apoptose , Sirtuínas
2.
Eur J Med Chem ; 271: 116461, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691891

RESUMO

Owing to the global health crisis of resistant pathogenic infections, researchers are emphasizing the importance of novel prevention and control strategies. Existing antimicrobial drugs predominantly target a few pathways, and their widespread use has pervasively increased drug resistance. Therefore, it is imperative to develop new antimicrobial drugs with novel targets and chemical structures. The de novo cysteine biosynthesis pathway, one of the microbial metabolic pathways, plays a crucial role in pathogenicity and drug resistance. This pathway notably differs from that in humans, thereby representing an unexplored target for developing antimicrobial drugs. Herein, we have presented an overview of cysteine biosynthesis pathways and their roles in the pathogenicity of various microorganisms. Additionally, we have investigated the structure and function of enzymes involved in these pathways as well as have discussed drug design strategies and structure-activity relationships of the enzyme inhibitors. This review provides valuable insights for developing novel antimicrobials and offers new avenues to combat drug resistance.


Assuntos
Cisteína , Descoberta de Drogas , Cisteína/metabolismo , Cisteína/química , Cisteína/biossíntese , Humanos , Relação Estrutura-Atividade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Estrutura Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo
3.
Oncol Lett ; 27(6): 275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690102

RESUMO

[This retracts the article DOI: 10.3892/ol.2019.10347.].

4.
Sci Total Environ ; 933: 173138, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734107

RESUMO

Due to the similar sources of swage irrigation, organic fertilizer, and sludge application, microplastics (MPs) and antibiotics coexist inevitably in the agriculture soils. However, the impacts of MPs with different polymer types and aging status on the bio-accessibility of co-existing antibiotics in soils remained unclear. Therefore, we using the diffusive gradients films for organic compounds devices (o-DGT) to evaluated the distribution of sulfadiazine (SDZ) in both paddy soil and saline soil amended with 0.5 % (w/w) MPs. Four polymer types (polyethylene: PE, polypropylene: PP, polyamide: PA, and polyethylene terephthalate: PET) and two aging statuses (aged PE and aged PP) of MPs were used in this study. Results showed that soil properties significantly influence the partition of SDZ in soil and soil solution, and SDZ gained a lower degradation rate but higher mobility in saline soil. MPs pose different impacts on partition of SDZ between paddy soil and saline soil. Notably, PP reduced the labile solid phase-solution phase partition coefficient (Kdl) by 17.7 % in paddy soil, while PE, PP, and aPE increased the Kdl value by 2.00, 1.62, and 2.81 times in saline soil. Besides, in saline soil, all the MPs reduced the SDZ concentration in the soil solution, while significantly increased the SDZ in o-DGT phase. Conversely, MPs did not impact the SDZ's o-DGT concentration in paddy soil. Additionally, MPs increased the R value of SDZ in two soils, especially in saline soil. It suggested that MPs could potentially enhance the resupply of SDZ from soil to plants, particularly under saline conditions. Furthermore, aged MPs had a more pronounced effect on these indicators compared to virgin MPs in saline soil. Therefore, MPs in soil poses a potential risk for biota's uptake of SDZ, particularly in fragile environment. Moreover, the risk intensifies with aged MPs.

5.
Clin Immunol ; 263: 110226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663493

RESUMO

Antibiotic resistance and the surge of infectious diseases during the pandemic present significant threats to human health. Trained immunity emerges as a promising and innovative approach to address these infections. Synthetic or natural fungal, parasitic and viral components have been reported to induce trained immunity. However, it is not clear whether bacterial virulence proteins can induce protective trained immunity. Our research demonstrates Streptococcus pneumoniae virulence protein PepO, is a highly potent trained immunity inducer for combating broad-spectrum infection. Our findings showcase that rPepO training confers robust protection to mice against various pathogenic infections by enhancing macrophage functionality. rPepO effectively re-programs macrophages, re-configures their epigenetic modifications and bolsters their immunological responses, which is independent of T or B lymphocytes. In vivo and in vitro experiments confirm that trained macrophage-secreted complement C3 activates peritoneal B lymphocyte and enhances its bactericidal capacity. In addition, we provide the first evidence that granulocyte colony-stimulating factor (G-CSF) derived from trained macrophages plays a pivotal role in shaping central-trained immunity. In summation, our research demonstrates the capability of rPepO to induce both peripheral and central trained immunity in mice, underscoring its potential application in broad-spectrum anti-infection therapy. Our research provides a new molecule and some new target options for infectious disease prevention.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Streptococcus pneumoniae , Animais , Streptococcus pneumoniae/imunologia , Camundongos , Macrófagos/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Proteínas de Bactérias/imunologia , Linfócitos B/imunologia , Feminino , Imunidade Treinada
6.
Artigo em Inglês | MEDLINE | ID: mdl-38626355

RESUMO

RATIONALE: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia and primary immunodeficiency disorders), but most cases remain idiopathic. OBJECTIVES: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. METHODS: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived, cells, cell cultures and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. MEASUREMENTS AND MAIN RESULTS: We identified bi-allelic pathogenic variants in WFDC2 in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and thus secretion of mature WFDC2. CONCLUSIONS: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

7.
Oncogene ; 43(22): 1669-1687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594505

RESUMO

The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Quinase 1 de Adesão Focal , Neoplasias Pulmonares , RNA Longo não Codificante , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , Animais , Camundongos , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Progressão da Doença , Linhagem Celular Tumoral , Feminino , Fosforilação , Camundongos Nus , Masculino
8.
Chin J Cancer Res ; 36(1): 66-77, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455368

RESUMO

Objective: Positive peritoneal lavege cytology (CY1) gastric cancer is featured by dismal prognosis, with high risks of peritoneal metastasis. However, there is a lack of evidence on pathogenic mechanism and signature of CY1 and there is a continuous debate on CY1 therapy. Therefore, exploring the mechanism of CY1 is crucial for treatment strategies and targets for CY1 gastric cancer. Methods: In order to figure out specific driver genes and marker genes of CY1 gastric cancer, and ultimately offer clues for potential marker and risk assessment of CY1, 17 cytology-positive gastric cancer patients and 31 matched cytology-negative gastric cancer patients were enrolled in this study. The enrollment criteria were based on the results of diagnostic laparoscopy staging and cytology inspection of exfoliated cells. Whole exome sequencing was then performed on tumor samples to evaluate genomic characterization of cytology-positive gastric cancer. Results: Least absolute shrinkage and selection operator (LASSO) algorithm identified 43 cytology-positive marker genes, while MutSigCV identified 42 cytology-positive specific driver genes. CD3G and CDKL2 were both driver and marker genes of CY1. Regarding mutational signatures, driver gene mutation and tumor subclone architecture, no significant differences were observed between CY1 and negative peritoneal lavege cytology (CY0). Conclusions: There might not be distinct differences between CY1 and CY0, and CY1 might represent the progression of CY0 gastric cancer rather than constituting an independent subtype. This genomic analysis will thus provide key molecular insights into CY1, which may have a direct effect on treatment recommendations for CY1 and CY0 patients, and provides opportunities for genome-guided clinical trials and drug development.

9.
J Transl Med ; 22(1): 274, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475814

RESUMO

BACKGROUND: Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS: Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS: Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS: The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Camundongos , Animais , Receptores de Antígenos Quiméricos/metabolismo , Antígenos CD19/genética , Antígenos CD19/metabolismo , Citotoxicidade Imunológica/genética , Linhagem Celular Tumoral , Células Matadoras Naturais , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA Mensageiro/metabolismo
10.
Langmuir ; 40(12): 6342-6352, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483101

RESUMO

Zerovalent iron (Fe0) is a promising candidate for remediating hexavalent chromium (Cr(VI)) via adsorption and (or) reduction. Herein, the reaction between Fe0 and Cr(VI) at the solid-liquid interface and in solution under varying pHs was inspected using the methodology of equilibrium thermodynamics. First, species distribution functions of aqueous Cr(VI), Cr(III), Fe(III), and Fe(II) are deduced to illuminate the quantitative distribution of aqueous metal species. Second, the plausible reaction at pH = 0-14 either at the solid-liquid interface or in solution is determined according to the species distribution function. Third, the spontaneity of each reaction is evaluated via a thermodynamic calculation based on the van't Hoff equation. The results present the following. (1) At the solid-liquid interface, the redox reaction 2Cr(VI) + 3Fe0 → 2Cr(III) + 3Fe(II) is spontaneous, inducing complete Cr(VI) → Cr(III) reduction at pH = 0-14. Especially, the high spontaneity of the redox reaction is mainly ascribed to Fe0 oxidation, which serves as a highly spontaneous subreaction. (2) In solution, the redox reaction Cr(VI) + 3Fe(II) → Cr(III) + 3Fe(III) is nonspontaneous at pH = 6 and 7, whereas it is spontaneous at pH = 6-7, 0-5, and 8-14. Accordingly, no Cr(VI) → Cr(III) reduction at pH = 6-7 and complete Cr(VI) → Cr(III) reduction at pH = 0-5 and 8-14 are expected. Particularly, the nonspontaneity of the Cr(VI) reduction at pH = 6-7 is majorly attributed to water ionization, which is involved as a highly nonspontaneous subreaction. On the contrary, the spontaneity of the Cr(VI) reduction at pH = 0-5 and 8-14 is mainly owing to acid-base neutralization, which is involved as a highly spontaneous subreaction. This work may deepen our knowledge about the chemistry involved in hexavalent chromium remediation by the zerovalent iron.

11.
Front Oncol ; 14: 1264926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532931

RESUMO

Hemophagocytic lymphohistiocytosis (HLH), also known as hemophagocytic syndrome (HPS), is a benign histiocytosis with hyperreactive proliferation of the mononuclear phagocyte system caused by immune function abnormalities, which often occurs under the background of genetic mutations, inflammation, infection or tumors. Because the research on malignancy-associated HLH (M-HLH) is focused on hematological malignancies, reports on HLH secondary to solid tumors are rare. In this case, we report a 14-year-old girl who developed HLH during treatment for intracranial multifocal germinoma, and the disease was controlled after hormone combined with etoposide(VP-16) and other related treatments. To our knowledge, there have been no documented cases of HLH caused by intracranial multifocal germinoma.

12.
Mol Ther Methods Clin Dev ; 32(1): 101194, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352269

RESUMO

The transfection efficiency and stability of the delivery vehicles of plasmid DNA (pDNA) are critical metrics to ensure high-quality and high-yield production of viral vectors. We previously identified that the optimal size of pDNA/poly(ethylenimine) (PEI) transfection particles is 400-500 nm and developed a bottom-up assembly method to construct stable 400-nm pDNA/PEI particles and benchmarked their transfection efficiency in producing lentiviral vectors (LVVs). Here, we report scale-up production protocols for such transfection particles. Using a two-inlet confined impinging jet (CIJ) mixer with a dual syringe pump set-up, we produced a 1-L batch at a flow rate of 100 mL/min, and further scaled up this process with a larger CIJ mixer and a dual peristaltic pump array, allowing for continuous production at a flow rate of 1 L/min without a lot size limit. We demonstrated the scalability of this process with a 5-L lot and validated the quality of these 400-nm transfection particles against the target product profile, including physical properties, shelf and on-bench stability, transfection efficiency, and LVV production yield in both 15-mL bench culture and 2-L bioreactor runs. These results confirm the potential of this particle assembly process as a scalable manufacturing platform for viral vector production.

13.
Exp Ther Med ; 27(3): 104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356674

RESUMO

[This corrects the article DOI: 10.3892/etm.2020.9183.].

14.
Talanta ; 272: 125819, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417372

RESUMO

Live food-borne pathogens, featured with rapid proliferative capacity and high pathogenicity, pose an emerging food safety and public health crisis. The high-sensitivity detection of pathogens is particularly imperative yet remains challenging. This work developed a functionalized nylon swab array with enhanced affinity for Salmonella typhimurium (S.T.) for high-specificity ATP bioluminescence-based S.T. detection. In brief, the nylon swabs (NyS) were turned to N-methylation nylon (NyS-OH) by reacting with formaldehyde, and NyS-OH were further converted to NyS-CA by reacting with carboxylic groups of citric acid (CA) and EDC/NHS solution, for altering the NyS surface energy to favor biomodification. The antibody-immobilized nylon swab (MNyS-Ab) was ready for S.T.-specific adsorption. Three prepared MNyS-Ab were installed on a stirrer to form an MNyS-Ab array, allowing for on-site enrichment of S.T. through absorptive extraction. The enriched S.T. was quantified by measuring the bioluminescence of ATP released from cell lysis utilizing a portable ATP bioluminescence sensor. The bioassay demonstrated a detectable range of 102-107 CFU mL-1 with a detection limit (LOD) of 8 CFU/mL within 35 min. The signal of single MNyS-Ab swabs was 500 times stronger than the direct detection of 106 CFU/mL S.T. The MNyS-Ab array exhibited a 100-fold increase in extraction level compared to a single MNyS. This combination of a portable bioluminescent sensor and modified nylon swab array offers a novel strategy for point-of-care testing of live S.T. strains. It holds promise for high-sensitivity measurements of other pathogens and viruses.


Assuntos
Nylons , Salmonella typhimurium , Anticorpos , Manejo de Espécimes , Trifosfato de Adenosina
15.
Microbiol Spectr ; 12(4): e0372723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421176

RESUMO

A landmark study by Poore et al. showed intratumor bacteria (ITBs) playing a critical role in most cancers by reproduction of The Cancer Genome Atlas (TCGA) transcriptome data. A recent study by Salzberg et al. argued that ITBs, being overstated as a methodology by Poore et al., were problematic. We previously reported that ITBs were prognostic in adrenocortical carcinoma (ACC), a highly aggressive rare disease using data by Poore et al., and here, we aimed to answer whether ITBs truly existed and were prognostic in ACC. ACC samples from our institutes underwent 16S rRNA sequencing [adrenocortical carcinoma blocks from Huashan Hospital and China Medical University (HS) cohort]. The ITB profile was compared to TCGA data processed by Poore et al. (TCGA-P) and TCGA data processed by Salzberg et al. (TCGA-S), respectively. The primary outcome was overall survival (OS). A total of 26 ACC cases (HS cohort) and 10 paraffin controls were sequenced. The TCGA cohort encompassed 77 cases. Two and four amid the top 10 abundant genera in HS cohort were not detected in TCGA-P and TCGA-S, respectively. Neither was alpha or beta diversity associated with survival nor could ACC be subtyped by ITB signature in the HS cohort. Notably, a five-genera ITB risk score (Corynebacterium, Mycoplasma, Achromobacter, Anaerococcus, and Streptococcus) for OS trained in the HS cohort was validated in both TCGA-P and TCGA-S cohorts and was independently prognostic. Whereas ITB signature on the whole may not be associated with ACC subtypes, certain ITB features are associated with prognosis, and a risk score could be generated and validated externally. IMPORTANCE: In this report, we looked at the role of ITBs in ACC in patients with different race and sequencing platforms. We found a five-genera ITB risk score consistently predicted overall survival in all cohorts. We conclude that certain ITB features are universally pathogenic to ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/diagnóstico , Carcinoma Adrenocortical/genética , Prognóstico , Neoplasias do Córtex Suprarrenal/diagnóstico , Neoplasias do Córtex Suprarrenal/genética , RNA Ribossômico 16S/genética , Fatores de Risco , Bactérias/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-38357943

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes. METHODS: The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect. RESULTS: We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells. CONCLUSION: Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.

18.
Plant Physiol ; 194(4): 2165-2182, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37995374

RESUMO

N6-methyladenosine (m6A) in mRNA and 5-methylcytosine (5mC) in DNA have critical functions for regulating gene expression and modulating plant growth and development. However, the interplay between m6A and 5mC is an elusive territory and remains unclear mechanistically in plants. We reported an occurrence of crosstalk between m6A and 5mC in maize (Zea mays) via the interaction between mRNA adenosine methylase (ZmMTA), the core component of the m6A methyltransferase complex, and decrease in DNA methylation 1 (ZmDDM1), a key chromatin-remodeling factor that regulates DNA methylation. Genes with m6A modification were coordinated with a much higher level of DNA methylation than genes without m6A modification. Dysfunction of ZmMTA caused severe arrest during maize embryogenesis and endosperm development, leading to a significant decrease in CHH methylation in the 5' region of m6A-modified genes. Instead, loss of function of ZmDDM1 had no noteworthy effects on ZmMTA-related activity. This study establishes a direct link between m6A and 5mC during maize kernel development and provides insights into the interplay between RNA modification and DNA methylation.


Assuntos
Metilação de DNA , Zea mays , Metilação de DNA/genética , Zea mays/genética , Zea mays/metabolismo , Metilação de RNA , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo
19.
Sci Total Environ ; 912: 168915, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38030000

RESUMO

Rare earth elements (REEs) are important to enhance agricultural productivity. The utilization of phytoremediation as a green technology for addressing heavy metal (HMs) contamination in soil and wastewater has gained significant attention. In our research, we conducted indoor hydroponic experiments to examine the impacts of lanthanum (La) on the growth and enrichment capacity of Solanum nigrum L. (S. nigrum). S. nigrum was cultivated in 10 mg·L-1 of cadmium (Cd), 25 mg·L-1 of lead (Pb), and a mixture of both (5 mg·L-1 Cd + 15 mg·L-1 Pb). Additionally, S. nigrum were subjected to foliar spray or hydroponic supplementation of La(III). The treatment with La(III) significantly increased total fresh weight by 17.82 % to 42.20 %, compared to the treatment without La(III). Furthermore, La(III) facilitated the endocytosis of roots and enhanced Cd2+ flux ranging from 15.64 % to 75.99 % when compared to the treatment without La(III). Foliar and hydroponic application of La(III) resulted in an increase in the translocation factors (TF) in plants of Cd and Pb compared to treatments without La(III). These findings can offer valuable insights into the potential of La(III) to enhance the phytoremediation of soil or wastewater polluted with compounds.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum nigrum , Cádmio/análise , Lantânio , Chumbo/toxicidade , Biodegradação Ambiental , Águas Residuárias , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química , Endocitose
20.
J Mol Cell Biol ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38059855

RESUMO

Mutations or dysregulated expression of NF-kappaB activating protein (NKAP) family genes have been found in human cancers. How NKAP family gene mutations promote tumor initiation and progression remains to be determined. Here, we characterized dNKAP, the Drosophila homolog of NKAP, and showed that impaired dNKAP function causes genome instability and tumorigenic growth in a Drosophila epithelial tumor model. dNKAP-knockdown wing imaginal discs exhibit tumorigenic characteristics, including tissue overgrowth, cell invasive behavior, abnormal cell polarity, and cell adhesion defects. dNKAP knockdown causes both R-loop accumulation and DNA damage, indicating the disruption of genome integrity. Further analysis showed that dNKAP knockdown induces c-Jun N-terminal kinase (JNK)-dependent apoptosis and causes changes in cell proliferation in distinct cell populations. Activation of the Notch and JAK/STAT signaling pathways contributes to the tumorigenic growth of dNKAP-knockdown tissues. Furthermore, JNK signaling is essential for dNKAP depletion-mediated cell invasion. Transcriptome analysis of dNKAP-knockdown tissues confirmed the misregulation of signaling pathways involved in promoting tumorigenesis and revealed abnormal regulation of metabolic pathways. dNKAP knockdown and oncogenic Ras, Notch, or Yki mutations show synergies in driving tumorigenesis, further supporting the tumor-suppressive role of dNKAP. In summary, this study demonstrates that dNKAP plays a tumor-suppressive role by preventing genome instability in Drosophila epithelia and thus provides novel insights into the roles of human NKAP family genes in tumor initiation and progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA