Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 70: 103059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316066

RESUMO

Reactive oxygen species (ROS) play a pivotal role in macrophage-mediated acute inflammation. However, the precise molecular mechanism by which ROS regulate macrophage polarization remains unclear. Here, we show that ROS function as signaling molecules that regulate M1 macrophage polarization through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (Chk2), vital effector kinases in the DNA damage response (DDR) signaling pathway. We further demonstrate that Chk2 phosphorylates PKM2 at the T95 and T195 sites, promoting glycolysis and facilitating macrophage M1 polarization. In addition, Chk2 activation increases the Chk2-dependent expression of p21, inducing cell cycle arrest for subsequent macrophage M1 polarization. Finally, Chk2-deficient mice infected with lipopolysaccharides (LPS) display a significant decrease in lung inflammation and M1 macrophage counts. Taken together, these results suggest that inhibiting the ROS-Chk2 axis can prevent the excessive inflammatory activation of macrophages, and this pathway can be targeted to develop a novel therapy for inflammation-associated diseases and expand our understanding of the pathophysiological functions of DDR in innate immunity.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fosforilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/genética , Ciclo Celular , Macrófagos/metabolismo , Inflamação
2.
Oncogene ; 43(2): 92-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952080

RESUMO

Several studies have demonstrated the role of the oncogenic mutant p53 in promoting tumor progression; however, there is limited information on the effects of secreted oncogenic mutant p53 on the tumor microenvironment and tumor immune escape. In this study, we found that secretion of mutant p53, determined by exosome content, is dependent on its N-terminal dileucine motif via its binding to ß-adaptin, and inhibited by the CHK2-mediated-Ser 20 phosphorylation. Moreover, we observed that the mutant p53 caused downregulation and dysfunction of CD4+ T lymphocytes in vivo and downregulated the levels and activities of rate-limiting glycolytic enzymes in vitro. Furthermore, inhibition of mutant p53 secretion by knocking down AP1B1 or mutation of dileucine motif could reverse the quantity and function of CD4+ T lymphocytes and restrain the tumor growth. Our study demonstrates that the tumor-derived exosome-mediated secretion of oncogenic mutant p53 inhibits glycolysis to alter the immune microenvironment via functional suppression of CD4+ T cells, which may be the underlying mechanism for tumor immune escape. Therefore, targeting TDE-mediated p53 secretion may serve as a potential therapeutic target for cancer treatment.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Microambiente Tumoral/genética , Linfócitos T/metabolismo , Mutação , Neoplasias/genética , Linhagem Celular Tumoral , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo
3.
Commun Biol ; 6(1): 1252, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081915

RESUMO

We report that autophagy-related gene 7 (ATG7) modulates p53 activity to regulate cell cycle and survival during metabolic stress, and that indicates Atg7 is functionally involved in cellular homeostasis in autophagy independent fashion. As a protein translation inhibitor, Programmed cell death 4 (PDCD4) expression is regulated by AKT1 phosphorylation. Here, we find that Atg7 interacts with PDCD4 and AKT1 to regulate AKT1-PDCD4 phosphorylation-ubiquitination axis during metabolic stress. We demonstrate that Atg7 senses decrease of ATP levels to suppress AKT-mediated PDCD4 phosphorylation at Ser67, which inhibits PDCD4 ubiquitinating during metabolic stress. Finally, PDCD4 accumulates and functions as a protein translation inhibitor to conserve energy, thus reducing apoptosis and allowing cells to survive stress periods. These results suggest that the ATP-Atg7-PDCD4 axis acts as a metabolic adaptation pathway which dictates cells to overcome metabolic stress.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-akt , Proteínas Reguladoras de Apoptose/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Ubiquitinação , Estresse Fisiológico , Trifosfato de Adenosina/metabolismo
4.
Oncogene ; 42(22): 1843-1856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081042

RESUMO

Oncogenic stress induces DNA damage repair (DDR) that permits escape from mitotic catastrophe and allows early precursor lesions during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown. Here, we show that SAMHD1 is up-regulated in early-stage human carcinoma tissues and cell lines under oxidative stress or genotoxic insults. We further demonstrate that de-ubiquitinating enzyme USP7 interacts with SAMHD1 and de-ubiquitinates it at lysine 421, thus stabilizing SAMHD1 protein expression for further interaction with CtIP for DDR, which promotes tumor cell survival under genotoxic stress. Furthermore, SAMHD1 levels positively correlates with USP7 in various human carcinomas, and is associated with an unfavorable survival outcome in patients who underwent chemotherapy. Moreover, USP7 inhibitor sensitizes tumor cells to chemotherapeutic agents by decreasing SAMHD1 in vitro and in vivo. These findings suggest that de-ubiquitination of SAMHD1 by USP7 promotes DDR to overcome oncogenic stress and affect chemotherapy sensitivity.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Ubiquitinação
5.
J Cell Mol Med ; 26(2): 491-506, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866322

RESUMO

In multiple types of cancer, decreased tumour cell apoptosis during chemotherapy is indicative of decreased chemosensitivity. Forkhead box K2 (FOXK2), which is essential for cell fate, regulates cancer cell apoptosis through several post-translational modifications. However, FOXK2 acetylation has not been extensively studied. Here, we evaluated the effects of sirtiun 1 (SIRT1) on FOXK2 deacetylation. Our findings demonstrated that SIRT1 inhibition increased FOXK2-induced chemosensitivity to cisplatin and that K223 in FOXK2 was acetylated. Furthermore, FOXK2 K223 deacetylation reduced chemosensitivity to cisplatin in vitro and in vivo. Mechanistically, FOXK2 was acetylated by the acetyltransferase cAMP response element binding protein and deacetylated by SIRT1. Furthermore, cisplatin attenuated the interaction between FOXK2 and SIRT1. Cisplatin or SIRT1 inhibition enhanced FOXK2 acetylation, thereby reducing the nuclear distribution of FOXK2. Additionally, FOXK2 K223 acetylation significantly affected the expression of cell cycle-related and apoptosis-related genes in cisplatin-stimulated cancer cells, and FOXK2 K223 hyperacetylation promoted mitotic catastrophe, which enhanced chemosensitivity to cisplatin. Overall, our results provided insights into the mechanisms of SIRT1-mediated FOXK2 deacetylation, which was involved in chemosensitivity to cisplatin.


Assuntos
Cisplatino , Sirtuína 1 , Acetilação , Apoptose , Cisplatino/farmacologia , Processamento de Proteína Pós-Traducional , Sirtuína 1/genética , Sirtuína 1/metabolismo
6.
Int J Biol Sci ; 17(14): 4047-4059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671219

RESUMO

The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.


Assuntos
Carcinogênese , Dano ao DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Humanos
7.
Int J Biol Sci ; 17(1): 89-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390835

RESUMO

The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.


Assuntos
Microambiente Celular , Sirtuína 1/metabolismo , Animais , Humanos , Inflamação/metabolismo , Secreção de Insulina , Metabolismo dos Lipídeos , Sistemas Neurossecretores/metabolismo
8.
Int J Biol Sci ; 16(15): 3075-3084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061819

RESUMO

Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, regulates multiple biologic and pathologic processes including mitosis, genomic integrity, cell homeostasis and tumorigenesis. However, the role of SIRT2 in the immune response to cancer remains largely elusive. In this study, we found significantly lower expression of SIRT2 in peripheral T lymphocytes from breast cancer patients when compared to normal individuals. Moreover, SIRT2 levels positively correlated with CD8+ effector memory T (TEM) cells in breast cancer patients. In keeping with these findings, altered T cells differentiation manifested as decreased TEM cells and increased naive T cells were observed in Sirt2 deficient mice. The upregulation of CD8+ TEM by SIRT2 might attribute to the activation of aerobic oxidation as well as the inhibition of GSK3ß acetylation in CD8+ T cells. Taken together, these results suggest that SIRT2 participate in tumor immune response by regulating T cell differentiation, which may provide novel insight for tumor prevention and immune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Sirtuína 2 , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Humanos , Ativação Linfocitária , Camundongos , NAD , Neoplasias/genética , Neoplasias/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
9.
J Exp Clin Cancer Res ; 39(1): 221, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33081836

RESUMO

BACKGROUND: Peritoneal metastasis (PM) is an important pathological process in the progression of gastric cancer (GC). The metastatic potential of tumor and stromal cells is governed by hypoxia, which is a key molecular feature of the tumor microenvironment. Mesothelial cells also participate in this complex and dynamic process. However, the molecular mechanisms underlying the hypoxia-driven mesothelial-tumor interactions that promote peritoneal metastasis of GC remain unclear. METHODS: We determined the hypoxic microenvironment in PM of nude mice by immunohistochemical analysis and screened VEGFA by human growth factor array kit. The crosstalk mediated by VEGFA between peritoneal mesothelial cells (PMCs) and GC cells was determined in GC cells incubated with conditioned medium prepared from hypoxia-treated PMCs. The association between VEGFR1 and integrin α5 and fibronectin in GC cells was enriched using Gene Set Enrichment Analysis and KEGG pathway enrichment analysis. In vitro and xenograft mouse models were used to evaluate the impact of VEGFA/VEGFR1 on gastric cancer peritoneal metastasis. Confocal microscopy and immunoprecipitation were performed to determine the effect of hypoxia-induced autophagy. RESULTS: Here we report that in the PMCs of the hypoxic microenvironment, SIRT1 is degraded via the autophagic lysosomal pathway, leading to increased acetylation of HIF-1α and secretion of VEGFA. Under hypoxic conditions, VEGFA derived from PMCs acts on VEGFR1 of GC cells, resulting in p-ERK/p-JNK pathway activation, increased integrin α5 and fibronectin expression, and promotion of PM. CONCLUSIONS: Our findings have elucidated the mechanisms by which PMCs promote PM in GC in hypoxic environments. This study also provides a theoretical basis for considering autophagic pathways or VEGFA as potential therapeutic targets to treat PM in GC.


Assuntos
Autofagia , Fibronectinas/metabolismo , Hipóxia/fisiopatologia , Integrina alfa5/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Epitélio/metabolismo , Epitélio/patologia , Feminino , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa5/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Biol Sci ; 16(12): 2051-2062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549753

RESUMO

DNA damage signals transducer RING finger protein 8 (RNF8) is involved in maintaining genomic stability by facilitating the repair of DNA double-strand breaks (DSB) via ubiquitin signaling. By analyzing the TCGA database and colon cancer tissue microarrays, we found that the expression level of RNF8 was positively correlated with that of c-Myc in colon cancer, which were closely associated with poor survival of colon cancer patients. Furthermore, overexpressing and knocking down RNF8 increased and decreased the expression of c-Myc in colon cancer cells, respectively. In addition, RNF8 interacted with ß-catenin and facilitated its nuclear translocation by conjugating K63 polyubiquitination on it. These observations suggested a de novo role of RNF8 in promoting the progression of colon cancer by inducing ß-catenin-mediated c-Myc expression.


Assuntos
Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , beta Catenina/genética
11.
Int J Biol Sci ; 16(11): 1917-1928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32398959

RESUMO

Septin4 is a tumor suppressor protein that promotes cell programmed death in various cell types through specifically antagonizing XIAP (X linked inhibitor of apoptosis), little is known its other novel binding partner and role in colorectal cancer. In this study, we found that Septin4 significantly expressed lower in human colon cancer when compared to peri-tumor benign cells, and its low expression was significantly associated with worse prognostic outcomes. Furthermore, Septin4 participated in DOX-induced colon cancer cell death in vitro. Septin4-overexpressing colon cancer cells displayed augmented apoptotic cell death and ROS production. Additionally, Septin4-knockdown cells revealed a resistance of DOX-induced cell death and reduced ROS production. Importantly, we first identified that BAX is a novel Septin4 binding partner and the interaction is enhanced under DOX treatment. Finally, Septin4-knockdown promoted colon cells growth in vivo. These observations suggest that Septin4 as an essential molecule contribute to the occurrence and development of human colon cancer and provide new technical approaches for targeted treatment of this disease.


Assuntos
Apoptose/fisiologia , Septinas/metabolismo , Proteína X Associada a bcl-2/metabolismo , Idoso , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular , Neoplasias do Colo/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Experimentais , Septinas/genética , Proteína X Associada a bcl-2/genética
12.
FASEB J ; 34(6): 7905-7914, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282093

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) arises when a truncated form of farnesylated prelamin A accumulates at the nuclear envelope, leading to misshapen nuclei. Previous studies of adult Zmpste24-deficient mice, a mouse model of progeria, have reported a metabolic response involving inhibition of the mTOR (mammalian target of rapamycin) kinase and activation of autophagy. However, exactly how mTOR or autophagy is involved in progeria remains unclear. Here, we investigate this question by crossing Zmpste24+/- mice with mice hypomorphic in mTOR (mTOR△/+ ), or mice heterozygous in autophagy-related gene 7 (Atg7+/- ). We find that accumulation of prelamin A induces premature aging through mTOR overactivation and impaired autophagy in newborn Zmpste24-/- mice. Zmpste24-/- mice with genetically reduced mTOR activity, but not heterozygosity in Atg7, show extended lifespan. Moreover, mTOR inhibition partially restores autophagy and S6K1 activity. We also show that progerin interacts with the Akt phosphatase to promote full activation of the Akt/mTOR signaling pathway. Finally, although we find that genetic reduction of mTOR postpones premature aging in Zmpste24 KO mice, frequent embryonic lethality occurs. Together, our findings show that over-activated mTOR contributes to premature aging in Zmpste24-/- mice, and suggest a potential strategy in treating HGPS patients with mTOR inhibitors.


Assuntos
Senilidade Prematura/metabolismo , Lamina Tipo A/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Masculino , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Transdução de Sinais/fisiologia
13.
Cell Death Differ ; 27(2): 482-496, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209362

RESUMO

Both the stress-response protein, SIRT1, and the cell cycle checkpoint kinase, CHK2, play critical roles in aging and cancer via the modulation of cellular homeostasis and the maintenance of genomic integrity. However, the underlying mechanism linking the two pathways remains elusive. Here, we show that SIRT1 functions as a modifier of CHK2 in cell cycle control. Specifically, SIRT1 interacts with CHK2 and deacetylates it at lysine 520 residue, which suppresses CHK2 phosphorylation, dimerization, and thus activation. SIRT1 depletion induces CHK2 hyperactivation-mediated cell cycle arrest and subsequent cell death. In vivo, genetic deletion of Chk2 rescues the neonatal lethality of Sirt1-/- mice, consistent with the role of SIRT1 in preventing CHK2 hyperactivation. Together, these results suggest that CHK2 mediates the function of SIRT1 in cell cycle progression, and may provide new insights into modulating cellular homeostasis and maintaining genomic integrity in the prevention of aging and cancer.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , Sirtuína 1/metabolismo , Acetilação , Animais , Ciclo Celular , Células Cultivadas , Quinase do Ponto de Checagem 2/deficiência , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Sirtuína 1/deficiência
14.
Int J Biol Sci ; 15(3): 507-521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745838

RESUMO

Proliferative vitreoretinopathy (PVR) is the most serious fibrous complication that causes vision loss after intraocular surgery, and there is currently no effective treatment in clinical. Autophagy is an important cell biological mechanism in maintaining the homeostasis of tissues and cells, resisting the process of EMT. However, it is still unclear whether autophagy could resist intraocular fibrosis and prevent PVR progression. In this study, we investigated the expression of mesenchymal biomarkers in autophagy deficiency cells and found these proteins were increased. The mesenchymal protein transcription factor Twist can bind to autophagy related protein p62 and promote the degradation of Twist, which reduced the expression of mesenchymal markers. By constructing an EMT model of retinal pigment epithelial (RPE) cells in vitro, we found that autophagy was activated in the EMT process of RPE cells. Moreover, in autophagy deficient RPE cell line via knockdown autophagy related protein 7 (Atg7), the expression of epithelial marker claudin-1 was suppressed and the mesenchymal markers were increased, accompanied by an increase in cell migration and contractility. Importantly, RPE epithelial properties can be maintained by promoting autophagy and effectively reversing TFG-ß2-induced RPE fibrosis. These observations reveal that autophagy may be an effective way to treat PVR.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Biomarcadores/metabolismo , Western Blotting , Linhagem Celular , Claudina-1/genética , Claudina-1/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibrose/genética , Fibrose/metabolismo , Homeostase/fisiologia , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Knockout
15.
Int J Biol Sci ; 14(7): 775-783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910687

RESUMO

Metabolic reprogramming is a distinct hallmark in tumorigenesis. Autophagy can rewire cell metabolism by regulating intracellular homeostasis. Warburg effect is a specific energy metabolic process that allows tumor cells to metabolize glucose via glycolysis into lactate even in the presence of oxygen. Although both autophagy and Warburg effect are involved in the stress response to energy crisis in tumor cells, their molecular relationship has remained largely elusive. We found that Atg7, a key molecule involved in autophagy, inhibits the Warburg effect. Mechanistically, Atg7 binds PKM2 and prevents its Tyr-105 phosphorylation by FGFR1. Furthermore, the hyperphosphorylation of PKM2 and its induced Warburg effect due to Atg7 deficiency promote epithelial-mesenchymal transition (EMT). Conversely, overexpression of Atg7 inhibits PKM2 phosphorylation and the Warburg effect, thereby inhibiting EMT of tumor cells. Our work reveals a molecular link between Atg7 and the Warburg effect, which may provide insight into novel strategies for cancer treatment.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteínas de Transporte/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/genética , Células HeLa , Humanos , Imunoprecipitação , Proteínas de Membrana/genética , Fosforilação , Ligação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
16.
Biochem Biophys Res Commun ; 438(1): 6-12, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23845905

RESUMO

Trefoil factor 3 (TFF3) is a member of the TFF-domain peptide family and essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. However, the role of TFF3 and its downstream regulating mechanisms in cancer cell migration remain unclear. We previously reported that TFF3 prolonged the up-regulation of Twist protein to modulate IL-8 secretion in intestinal epithelial cells. In this study, we investigated the role of Twist protein in TFF3-induced migration of SGC7901 cells. While Twist was activated by TFF3, siRNA-mediated knockdown of Twist abolished TFF3-induced cell migration. Furthermore, the migration related marker CK-8 as well as ZO-1 and MMP-9 was also regulated by TFF3 via a Twist-dependent mechanism. Our study suggests that Twist, as an important potential downstream effector, plays a key role in TFF3-modulated metastasis in gastric cancer and can be a promising therapeutic target against intestinal-type gastric cancer.


Assuntos
Movimento Celular , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Neoplasias Gástricas/fisiopatologia , Proteína 1 Relacionada a Twist/metabolismo , Linhagem Celular , Humanos , Neoplasias Gástricas/patologia , Fator Trefoil-3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA