Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2401455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38659236

RESUMO

In this work, a novel liquid nitrogen quenching strategy is engineered to fulfill iron active center coordination reconstruction within iron carbide (Fe3C) modified on biomass-derived nitrogen-doped porous carbon (NC) for initiating rapid hydrogen and oxygen evolution, where the chrysanthemum tea (elm seeds, corn leaves, and shaddock peel, etc.) is treated as biomass carbon source within Fe3C and NC. Moreover, the original thermodynamic stability is changed through the corresponding force generated by liquid nitrogen quenching and the phase transformation is induced with rich carbon vacancies with the increasing instantaneous temperature drop amplitude. Noteworthy, the optimizing intermediate absorption/desorption is achieved by new phases, Fe coordination, and carbon vacancies. The Fe3C/NC-550 (550 refers to quenching temperature) demonstrates outstanding overpotential for hydrogen evolution reaction (26.3 mV at -10 mA cm-2) and oxygen evolution reaction (281.4 mV at 10 mA cm-2), favorable overall water splitting activity (1.57 V at 10 mA cm-2). Density functional theory (DFT) calculations further confirm that liquid nitrogen quenching treatment can enhance the intrinsic electrocatalytic activity efficiently by optimizing the adsorption free energy of reaction intermediates. Overall, the above results authenticate that liquid nitrogen quenching strategy open up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.

2.
J Ethnopharmacol ; 308: 116246, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36791926

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cymbaria daurica L. (C. daurica) is a perennial herb known commonly as "Xinba" (Chinese) and "Kanba-Arong" (Mongolian). In Mongolia, it is used as a traditional medicine to treat eczema and other skin diseases due to its anti-swelling, anti-inflammatory, anti-hemorrhagic, and anti-itching properties. However, the potential mechanism of action for eczema treatment has not been reported. AIM OF THE STUDY: To investigate the effect of C. daurica on 1-chloro-2,4-dinitrobenzene (DNCB)-induced eczema in rats and the associated action mechanism. MATERIALS AND METHODS: Qualitative analysis of C. daurica was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Based on information obtained from compound identification and relevant literature, the possible targets of C. daurica against eczema were analyzed using network pharmacology and molecular docking methods. The DNCB-induced eczema rat models were treated with different dosages of C. daurica extract (10, 50, and 250 mg/mL per day), and the therapeutic effects subsequently evaluated based on the degree of skin inflammation, spleen index, and hematoxylin and eosin staining (H&E staining). Enzyme-linked immunosorbent assay (ELISA), reverse transcription quantitative polymerase chain reaction (RT-qPCR), and western blotting were used to analyze the relevant target effects. The C. daurica mechanism of action on eczema was verified by animal experiments. High-performance liquid chromatography (HPLC) was carried out to determine the content of active ingredients in C. daurica. In addition, the physicochemical properties of the extract were evaluated. RESULTS: Our analysis of the 173 targets included in the protein-protein interaction (PPI) network identified tumor necrosis factor (TNF) and interleukin 2 (IL-2) as key targets involved in the treatment of eczema with C. daurica extract. Furthermore, the 173 targets were associated with the natural killer cell-mediated cytotoxicity pathway. Our results showed that C. daurica significantly reduced IL-2 and TNF-α serum levels in eczema rat models (P < 0.0001); thus, playing an important role in the anti-inflammatory response. Furthermore, according to the p-value, RT-qPCR and western blotting showed that the expression of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1), Vav guanine nucleotide exchange factor (Vav), and growth factor receptor-bound protein 2 (Grb2) changed in the skin of the eczema model rats after treatment with the C. daurica extract. CONCLUSION: Our study confirms that C. daurica can inhibit SHP-1, Vav, and Grb2 expression; thereby, inhibiting the natural killer cell-mediated cytotoxicity pathway. These results provide insight into the mechanism of C. daurica in treating eczema.


Assuntos
Medicamentos de Ervas Chinesas , Eczema , Plantas Medicinais , Ratos , Animais , Interleucina-2 , Simulação de Acoplamento Molecular , Cromatografia Líquida , Dinitroclorobenzeno , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fator de Necrose Tumoral alfa , Eczema/tratamento farmacológico , Células Matadoras Naturais
3.
Poult Sci ; 99(12): 7035-7045, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248620

RESUMO

It has been reported that oral intake of aflatoxin B1 (AFB1)-contaminated feed could cause acute, sub-chronic, or chronic toxicity in livestock and poultry. However, the harmful effect of AFB1 on the small intestine is still controversial. Therefore, blocking the entry of AFB1 into the body through the digestive tract is one of the important methods to prevent its toxicity. In the present study, 1-day-old Arbor Acres broilers were randomly divided into 6 groups including control group, curcumin control group (450 mg curcumin/kg feed), curcumin low-, medium-, and high-dose group (150, 300, and 450 mg curcumin/kg feed + 5 mg AFB1/kg feed), and AFB1 group (5 mg AFB1/kg feed). After 28 d, the samples of chickens' duodenums were collected for further analyses. AFB1 caused abnormal functional and morphological changes in the duodenum, including histological lesions, increased the length of the duodenum and depth of crypt, decreased the unit weight of the duodenum, height of villus, and the value of villus height/crypt depth. Meanwhile, AFB1 administration enhanced malonaldehyde activity, 8-HOdG level, and the mRNA expression of cytochrome P450 (CYP450) enzymes, and reduced superoxide dismutase, catalase, adenosine triphosphatase (ATPase) activity and the mRNA expression of Abcb1. Importantly, curcumin supplementation partially ameliorated AFB1-induced abnormal functional and morphological signs of the duodenum, alleviated AFB1-induced oxidative stress, and decreased the mRNA expression of CYP450 enzymes. Furthermore, curcumin ameliorated AFB1-induced decrease in the Abcb1 mRNA expression, P-glycoprotein (P-gp) level, and ATPase activities. It has been suggested from these results that curcumin supplementation in the feed could ameliorate AFB1-induced duodenal toxicity and damage through downregulating CYP450 enzymes, promoting ATPase activities, and inducing P-gp in chickens.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Aflatoxina B1 , Curcumina , Sistema Enzimático do Citocromo P-450 , Suplementos Nutricionais , Duodeno , Regulação da Expressão Gênica , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Aflatoxina B1/toxicidade , Ração Animal/análise , Animais , Galinhas , Curcumina/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Duodeno/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Distribuição Aleatória
4.
J Am Chem Soc ; 142(29): 12643-12650, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32584563

RESUMO

The controllable synthesis of stable single-metal site catalysts with an expected coordination environment for high catalytic activity and selectivity is still challenging. Here, we propose a cation-exchange strategy for precise production of an edge-rich sulfur (S) and nitrogen (N) dual-decorated single-metal (M) site catalysts (M = Cu, Pt, Pd, etc.) library. Our strategy relies on the anionic frameworks of sulfides and N-rich polymer shell to generate abundant S and N defects during high-temperature annealing, further facilitating the stabilization of exchanged metal species with atomic dispersion and excellent accessibility. This process was traced by in situ transmission electron microscopy, during which no metal aggregates were observed. Both experiments and theoretical results reveal the precisely obtained S, N dual-decorated Cu sites exhibit a high activity and low reaction energy barrier in catalytic hydroxylation of benzene at room temperature. These findings provide a route to controllably produce stable single-metal site catalysts and an engineering approach for regulating the central metal to improve catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA