Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(11): 7692-7704, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38768258

RESUMO

A MS/MS-based molecular networking approach compared to the Global Natural Product Social Molecular Networking library, in association with genomic annotation of natural product biosynthetic gene clusters within a marine-derived fungus, Aspergillus sydowii, identified a suite of xanthone metabolites. Chromatographic techniques applied to the cultured fungus led to the isolation of 11 xanthone-based alkaloids, dubbed sydoxanthones F-M. The structures of these alkaloids were elucidated using extensive spectroscopic data, including electronic circular dichroism and single-crystal X-ray diffraction data for configurational assignments. Among these analogues, sydoxanthones F-K exhibit structure features typical of nucleobase-coupled xanthones, with sydoxanthone H being an N-bonded xanthone dimer. Notably, (±)sydoxanthones F (1a/1b), (±)sydoxanthones H (3b/3a), and (±)sydoxanthones J (5b/5a) are enantiomeric pairs, while sydoxanthones G (2), I (4), and K (6) are stereoisomers of 1, 3, and 5, respectively. Furthermore, (+)sydoxanthone H (3a) demonstrated significant rescue of cell viability in H2O2-injuried SH-SY5Y cells by inhibiting reactive oxygen species production, suggesting its potential for neuroprotection.


Assuntos
Aspergillus , Espécies Reativas de Oxigênio , Xantonas , Xantonas/química , Xantonas/farmacologia , Xantonas/isolamento & purificação , Aspergillus/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral
2.
Bioorg Chem ; 141: 106873, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734192

RESUMO

Metastasis is the leading cause of cancer-related mortality, targeting angiogenesis emerges as a therapeutic strategy for the treatment of melanoma metastasis. Discovery of new antiangiogenic compounds with specific mechanism of action is still desired. In present study, a bioassay-guidance uncovers the EtOAc extract of a marine-derived fungus Aspergillus clavutus LZD32-24 with significant inhibitory activity against the angiogenesis in Tg (fli1a: EGFP) zebrafish model. Extensive chromatographic fractionation led to the isolation of 48 indoloquinazoline alkaloids, including 21 new analogues namely clavutoines A-U (1-21). Their structures were determined by the spectroscopic data, including the ECD, single crystal X-ray diffraction and quantum chemical calculation for the configurational assignments. Among the bioactive analogues, quinadoline B (QB) showed the most efficacy to suppress the zebrafish vascular outgrowth in zebrafish embryos. QB markedly inhibited the migration, invasion and tube formation with weak cytotoxicity in human umbilical vein endothelial cells (HUVECs). Investigation of the mode of action revealed QB suppressed the ROCK/MYPT1/MLC2/coffin and FAK /Src signaling pathways, and subsequently disrupted actin cytoskeletal organization. In addition, QB reduced the number of new vessels sprouting from the ex vivo chick chorioallantoic membrane (CAM), and inhibited the metastasis of B16F10 melanoma cells in lung of C57BL/6 mice through suppressing angiogenesis. These findings suggest that QB is a potential lead for the development of new antiangiogenic agent to inhibit melanoma metastasis.


Assuntos
Alcaloides , Melanoma , Camundongos , Animais , Humanos , Peixe-Zebra , Neovascularização Patológica/patologia , Camundongos Endogâmicos C57BL , Células Endoteliais da Veia Umbilical Humana , Inibidores da Angiogênese/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Melanoma/tratamento farmacológico , Proliferação de Células
3.
Front Nutr ; 10: 1149137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025610

RESUMO

Introduction: Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods: In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results: The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion: The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.

4.
Nat Commun ; 13(1): 3544, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729093

RESUMO

Immunometabolism contributes to inflammation, but how activated macrophages acquire extracellular nutrients to fuel inflammation is largely unknown. Here, we show that the plasma membrane potential (Vm) of macrophages mediated by Kir2.1, an inwardly-rectifying K+ channel, is an important determinant of nutrient acquisition and subsequent metabolic reprogramming promoting inflammation. In the absence of Kir2.1 activity, depolarized macrophage Vm lead to a caloric restriction state by limiting nutrient uptake and concomitant adaptations in nutrient conservation inducing autophagy, AMPK (Adenosine 5'-monophosphate-activated protein kinase), and GCN2 (General control nonderepressible 2), which subsequently depletes epigenetic substrates feeding histone methylation at loci of a cluster of metabolism-responsive inflammatory genes, thereby suppressing their transcription. Kir2.1-mediated Vm supports nutrient uptake by facilitating cell-surface retention of nutrient transporters such as 4F2hc and GLUT1 by its modulation of plasma membrane phospholipid dynamics. Pharmacological targeting of Kir2.1 alleviated inflammation triggered by LPS or bacterial infection in a sepsis model and sterile inflammation in human samples. These findings identify an ionic control of macrophage activation and advance our understanding of the immunomodulatory properties of Vm that links nutrient inputs to inflammatory diseases.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Membrana Celular/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Potenciais da Membrana , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
5.
Sci Immunol ; 7(68): eabk2092, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119941

RESUMO

Goblet cells and their main secretory product, mucus, play crucial roles in orchestrating the colonic host-microbe interactions that help maintain gut homeostasis. However, the precise intracellular machinery underlying this goblet cell-induced mucus secretion remains poorly understood. Gasdermin D (GSDMD) is a recently identified pore-forming effector protein that causes pyroptosis, a lytic proinflammatory type of cell death occurring during various pathophysiological conditions. Here, we reveal an unexpected function of GSDMD in goblet cell mucin secretion and mucus layer formation. Specific deletion of Gsdmd in intestinal epithelial cells (ΔIEC) led to abrogated mucus secretion with a concomitant loss of the mucus layer. This impaired colonic mucus layer in GsdmdΔIEC mice featured a disturbed host-microbial interface and inefficient clearance of enteric pathogens from the mucosal surface. Mechanistically, stimulation of goblet cells activates caspases to process GSDMD via reactive oxygen species production; in turn, this activated GSDMD drives mucin secretion through calcium ion-dependent scinderin-mediated cortical F-actin disassembly, which is a key step in granule exocytosis. This study links epithelial GSDMD to the secretory granule exocytotic pathway and highlights its physiological nonpyroptotic role in shaping mucosal homeostasis in the gut.


Assuntos
Células Epiteliais/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Muco/imunologia , Proteínas de Ligação a Fosfato/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade
6.
Aging (Albany NY) ; 14(4): 2004-2013, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196650

RESUMO

Cumulative evidence suggests that dysfunction of ubiquitinating enzymes is responsible for multiple types of diseases including cancer. However, what role the ubiquitinating enzyme plays in gastric cancer remains unknown. In this study, using bioinformatics analysis and a series of experimental analyses, we found that an E3 ubiquitin-protein, MKRN2 was down-regulated in gastric cancer tissues. Kaplan-Meier survival analysis showed the low MKRN2 expression significantly indicated poor prognosis. Overexpression of MKRN2 notably inhibited cell proliferation in vitro and in vivo. Conversely, knockdown of MKRN2 had the opposite effects in vitro. Additionally, the mechanical analysis indicated that MKRN2 promoted ubiquitination-mediated degradation of PKM2 and attenuated its effect on ERK. Overall, the present study suggests that MKRN2 may be a potential therapeutic target for gastric cancer.


Assuntos
Neoplasias Gástricas , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Ribonucleoproteínas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
7.
FEBS Lett ; 595(19): 2447-2462, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387860

RESUMO

The NLRP3 inflammasome, a critical component of the innate immune system, induces caspase-1 activation and interleukin-1ß maturation and drives cell fate toward pyroptosis. However, the mechanism of NLRP3 inflammasome activation still remains elusive. Here we provide evidence that AKT regulates NLRP3 inflammasome activation. Upon NLRP3 activation, AKT activity is inhibited by second stimulus-induced reactive oxygen species. In contrast, AKT activation leads to NLRP3 inhibition and improved mitochondrial fitness. Mechanistically, AKT induces the phosphorylation of the DDX3X (DEAD-box helicase 3, X-linked), a recently identified NLRP3 inflammasome component, and impairs the interaction between DDX3X and NLRP3. Furthermore, an AKT agonist reduces NLRP3-dependent inflammation in two in vivo models of LPS-induced sepsis and Alum-induced peritonitis. Altogether, our study highlights an important role of AKT in controlling NLRP3 inflammasome activation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Humanos , Camundongos
9.
Bioorg Chem ; 105: 104423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160223

RESUMO

Chemical investigation of a gorgonian coral Ellisella sp. resulted in the isolation of 12 briarane-type diterpenoids, including eight new congeners namely ellisellolides A-H (1-8). Their structures were determined by extensive spectroscopic analysis, aided the calculated ECD data to support the configurational assignment. All compounds were evaluated for the in vitro anti-HBV activities in HepAD38 cell line, while preliminary analyses of the structure-activity relationship demonstrated that junceellolide C featured an 3E,5(16)-diene and a chlorine-substitution at C-6 is the most active congener. Junceellolide C exhibited efficient reduction against the HBV DNA, HBV RNA and HBeAg production with a dose-dependent manner. It also significantly reduced the HBV cccDNA replenishment and promoted the existed HBV cccDNA degradation. These findings suggest junceellolide C to be a transcription inhibitor of cccDNA and a promising lead for the development of new anti-HBV agent.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Animais , Antozoários , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular Tumoral , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Vírus da Hepatite B/genética , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
10.
Mar Drugs ; 18(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967228

RESUMO

Three new quinazoline-containing diketopiperazines, polonimides A-C (1-3), along with four analogues (4-7), were obtained from the marine-derived fungus Penicillium polonicum. Among them, 2 and 4, 3 and 5 were epimers, respectively, resulting the difficulty in the determination of their configurations. The configurations of 1-3 were determined by 1D nuclear overhauser effect (NOE), Marfey and electron circular dichroism (ECD) methods. Nuclear magnetic resonance (NMR) calculation with the combination of DP4plus probability method was used to distinguish the absolute configurations of C-3 in 3 and 5. All of 1-7 were tested for their chitinase inhibitory activity against OfHex1 and OfChi-h and cytotoxicity against A549, HGC-27 and UMUC-3 cell lines. Compounds 1-7 exhibited weak activity towards OfHex1 and strong activity towards OfChi-h at a concentration of 10.0 µM, with the inhibition rates of 0.7%-10.3% and 79.1%-95.4%, respectively. Interestingly, 1-7 showed low cytotoxicity against A549, HGC-27 and UMUC-3 cell lines, suggesting that good prospect of this cluster of metabolites for drug discovery.


Assuntos
Quitinases/antagonistas & inibidores , Dicetopiperazinas/farmacologia , Penicillium/metabolismo , Linhagem Celular Tumoral , Dicroísmo Circular , Dicetopiperazinas/química , Dicetopiperazinas/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Espectroscopia de Ressonância Magnética , Prazosina/análogos & derivados , Quinazolinas/química , Quinazolinas/isolamento & purificação , Quinazolinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
11.
Biochem Biophys Res Commun ; 523(3): 685-691, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31948757

RESUMO

AIM: High circulating free fatty acid (FFA) concentration has a critical role in the development of obesity associated vascular comorbidities. Ample previous findings revealed that FFA, especially saturated, induce endothelial dysfunction throught multiple mechanisms (summarized as lipotoxicity). As a mediator that transfers information among cells, extracellular vesicles(EVs) participate in pathologic processes of many diseases, including angiocardiopathy, insulin resistance, autoimmunity disease. However, how lipotoxicity changed the proportion of EVs secreted from monocytes, furthermore, the effect of the EVs exerts on endothelial cells, haven't been demonstrated. METHOD: In our experience, differential ultracentrifugation was used to extract EVs from condition medium (CM) of THP-1 monocytes under given treatments. Then we co-incubated the EVs derived from palmitate-treated monocytes with HUVECs for 24 h, after which molecular and phenotypic assays were conducted. RESULT: Palmitate-treated monocytes EVs promote the production of adhesion associated proteins of endothelial cells, such as VCAM-1, ICAM-1. Meanwhile, palmitate-stimulation may play a promoter role in the pro-migration capacity of monocytes-EVs. In brief, EVs could be the new pathological junction between FFA and endothelial damage.


Assuntos
Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Monócitos/metabolismo , Palmitatos/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Células Epiteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/citologia , Obesidade/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
Virol Sin ; 33(6): 545-556, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30569290

RESUMO

Dengue virus (DENV) and Zika virus (ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there are few effective vaccines and therapies available against these viruses. Therefore, the discovery of new antiviral agents is critical. Herein, a scorpion venom peptide (Smp76) characterized from Scorpio maurus palmatus was successfully expressed and purified in Escherichia coli BL21(DE3). The recombinant Smp76 (rSmp76) was found to effectively inhibit DENV and ZIKV infections in a dose-dependent manner in both cultured cell lines and primary mouse macrophages. Interestingly, rSmp76 did not inactivate the viral particles directly but suppressed the established viral infection, similar to the effect of interferon (IFN)-ß. Mechanistically, rSmp76 was revealed to upregulate the expression of IFN-ß by activating interferon regulatory transcription factor 3 (IRF3) phosphorylation, enhancing the type-I IFN response and inhibiting viral infection. This mechanism is significantly different from traditional virucidal antimicrobial peptides (AMPs). Overall, the scorpion venom peptide Smp76 is a potential new antiviral agent with a unique mechanism involving type-I IFN responses, demonstrating that natural AMPs can enhance immunity by functioning as immunomodulators.


Assuntos
Antivirais/farmacologia , Interferon Tipo I/imunologia , Peptídeos/farmacologia , Venenos de Escorpião/farmacologia , Animais , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos , Escherichia coli/genética , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/imunologia , Interferon beta/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Proteínas Recombinantes/farmacologia , Zika virus/efeitos dos fármacos
13.
Immunity ; 49(5): 842-856.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30366764

RESUMO

Cholesterol metabolism has been linked to immune functions, but the mechanisms by which cholesterol biosynthetic signaling orchestrates inflammasome activation remain unclear. Here, we have shown that NLRP3 inflammasome activation is integrated with the maturation of cholesterol master transcription factor SREBP2. Importantly, SCAP-SREBP2 complex endoplasmic reticulum-to-Golgi translocation was required for optimal activation of the NLRP3 inflammasome both in vitro and in vivo. Enforced cholesterol biosynthetic signaling by sterol depletion or statins promoted NLPR3 inflammasome activation. However, this regulation did not predominantly depend on changes in cholesterol homeostasis controlled by the transcriptional activity of SREBP2, but relied on the escort activity of SCAP. Mechanistically, NLRP3 associated with SCAP-SREBP2 to form a ternary complex which translocated to the Golgi apparatus adjacent to a mitochondrial cluster for optimal inflammasome assembly. Our study reveals that, in addition to controlling cholesterol biosynthesis, SCAP-SREBP2 also serves as a signaling hub integrating cholesterol metabolism with inflammation in macrophages.


Assuntos
Colesterol/metabolismo , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Macrófagos/imunologia , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteólise
14.
Peptides ; 107: 61-67, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30102941

RESUMO

Since there is a symbiotic and competitive relationship between microorganisms in the same ecological niche, fungal defensins have been found to be important resources for antimicrobial peptides. Here, a fungal defensin, triintsin, was characterized in a clinical isolate of Trichophyton interdigitale from a patient with onychomycosis. The comparison of its genomic and mRNA sequences showed the gene organization and structure of three coding exons separated by two introns. The precursor peptide of triintsin contained 85 amino acid residues, which were composed of three parts including an N-terminal signal domain of 21 residues, a pro-peptide of 47 residues that ended at lysine-arginine and a mature peptide of 38 residues at the C-terminus. The 3D-structure established by homology modeling revealed that triintsin presented a representative typical cysteine-stabilized α-helical and ß-sheet fold. The reductive linear peptide of triintsin was obtained by chemical synthesis. After cyclization to form three pairs of disulfide bonds, the oxidative-type peptide displayed broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria but also showed anti-fungal activity. Moreover, triintsin can effectively inhibit the growth of clinical strains. Altogether, the peptide is a human pathogenic fungus-derived defensin with broad-spectrum antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Defensinas/farmacologia , Dermatoses do Pé/microbiologia , Onicomicose/microbiologia , Trichophyton/química , Defensinas/química , Defensinas/metabolismo , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Conformação Proteica , Domínios Proteicos , Análise de Sequência de Proteína , Tinha/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA