Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612096

RESUMO

A single body-centered cubic (BCC)-structured AlCoFeNi medium-entropy alloy (MEA) was prepared by the selective laser melting (SLM) technique. The hardness of the as-built sample was around 32.5 HRC. The ultimate tensile strength (UTS) was around 1211 MPa, the yield strength (YS) was around 1023 MPa, and the elongation (El) was around 10.8%. A novel BCC + B2 + face-centered cubic (FCC) structure was formed after aging. With an increase in aging temperature and duration, the number of fine grains increased, and more precipitates were observed. After aging at 450 °C for 4 h, the formed complex polyphase structure significantly improved the mechanical properties. Its hardness, UTS, YS, and El were around 45.7 HRC, 1535 MPa, 1489 MPa, and 8.5%, respectively. The improvement in mechanical properties was mainly due to Hall-Petch strengthening, which was caused by fine grains, and precipitation strengthening, which was caused by an increase in precipitates after aging. Meanwhile, the FCC precipitates made the alloy have good toughness. The complex interaction of multiple strengthening mechanisms leads to a good combination of strength, hardness, and toughness.

2.
Int J Biol Macromol ; 239: 124358, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028615

RESUMO

The Fructus cannabis protein extract powder (FP), was firstly used as a green and high effective corrosion inhibitor through a simple water-extraction method. The composition and surface property of FP were characterized by FTIR, LC/MS, UV, XPS, water contact angle and AFM force-curve measurements. Results indicate that FP contains multiply functional groups, such as NH, CO, CN, CO, etc. The adsorption of FP on the carbon steel surface makes it higher hydrophobicity and adhesion force. The corrosion inhibition performance of FP was researched by electrochemical impedance, polarization curve and differential capacitance curve. Moreover, the inhibitive stability of FP, and the effects of temperature and chloride ion on its inhibition property were also investigated. The above results indicate that the FP exhibits excellent corrosion inhibition efficiency (~98 %), and possesses certain long-term inhibitive stability with inhibition efficiency higher than 90 % after 240 h immersion in 1 M HCl solution. The high temperature brings about the FP desorption on the carbon steel surface, while high concentration of chloride ion facilitates the FP adsorption. The adsorption mechanism of FP follows the Langmuir isotherm adsorption. This work will provide an insight for protein as a green corrosion inhibitor.


Assuntos
Cannabis , Pós , Aço/química , Corrosão , Cloretos , Carbono , Água/química
3.
Proc Natl Acad Sci U S A ; 119(20): e2202812119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533282

RESUMO

Developing facile approaches for preparing efficient electrocatalysts is of significance to promote sustainable energy technologies. Here, we report a facile iron-oxidizing bacteria corrosion approach to construct a composite electrocatalyst of nickel­iron oxyhydroxides combined with iron oxides. The obtained electrocatalyst shows improved electrocatalytic activity and stability for oxygen evolution, with an overpotential of ∼230 mV to afford the current density of 10 mA cm−2. The incorporation of iron oxides produced by iron-oxidizing bacteria corrosion optimizes the electronic structure of nickel­iron oxyhydroxide electrodes, which accounts for the decreased free energy of oxygenate generation and the improvement of OER activity. This work demonstrates a natural bacterial corrosion approach for the facile preparation of efficient electrodes for water oxidation, which may provide interesting insights in the multidisciplinary integration of innovative nanomaterials and emerging energy technologies.


Assuntos
Níquel , Oxigênio , Microbiologia da Água , Corrosão , Compostos Férricos , Ferro , Água
4.
Front Bioeng Biotechnol ; 9: 815953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004662

RESUMO

The parsley extract (PLE) was prepared using absolute ethyl alcohol. The PLE and synergistic iodide were firstly utilized as efficacious corrosion inhibitors to slow down the corrosion rate of carbon steel-Q235 in 0.5 mol/L H2SO4 solution. The anti-corrosion performance was researched by weight loss method, electrochemical tests, surface analysis and quantum chemistry calculation. Results of electrochemical and weight loss tests show that the synergetic PLE and I- exhibit the optimal corrosion inhibition efficiency 99%. The combined inhibitor displays the favorable long-term corrosion inhibition effect, and the inhibition efficiency can maintain more than 90% after 144 h immersion. The introduction of I- makes carbon steel surface with higher negative charge amount, which could be beneficial to the interaction between corrosion inhibitor and Fe atoms. The adsorption behavior obeys the Langmuir isotherm adsorption, and involves chemical and physical adsorption. On the basis of electrochemical consequences and theoretical calculation, the adsorption process and anti-corrosion mechanisms are further explored.

5.
Nat Commun ; 11(1): 5075, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033245

RESUMO

Nickel-iron composites are efficient in catalyzing oxygen evolution. Here, we develop a microorganism corrosion approach to construct nickel-iron hydroxides. The anaerobic sulfate-reducing bacteria, using sulfate as the electron acceptor, play a significant role in the formation of iron sulfide decorated nickel-iron hydroxides, which exhibit excellent electrocatalytic performance for oxygen evolution. Experimental and theoretical investigations suggest that the synergistic effect between oxyhydroxides and sulfide species accounts for the high activity. This microorganism corrosion strategy not only provides efficient candidate electrocatalysts but also bridges traditional corrosion engineering and emerging electrochemical energy technologies.


Assuntos
Desulfotomaculum/metabolismo , Hidróxidos/metabolismo , Níquel/metabolismo , Oxigênio/metabolismo , Corrosão , Teoria da Densidade Funcional , Eletroquímica , Eletrodos , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
6.
Talanta ; 217: 121042, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498912

RESUMO

An electrochemical immunosensor for highly sensitive detection of cancer biomarkers has been developed based on the combination of a sensing platform of polydopamine modified porous graphene and a nonenzymatic label of metal-organic framework (MOF) conjugated secondary antibody. This approach achieves a wide range of linear response from 0.1 to 10 ng/mL, low detection limit of 0.025 ng/mL (at a signal to noise ratio of 3), good reproducibility and selectivity for the detection of prostate specific antigen (PSA) as a model analyte. The high performance of the immunosensor is attributed to the high surface area from porous graphene and the strong adhesion of polydopamine, allowing a high load of the primary antibody of PSA, as well as the highly electrocatalytic activity of the Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylic acid) MOF toward H2O2 to provide greatly amplified sensitivity. In this respect, the MOF-based nonenzymatic label shows promising application for the point-of-care detection of different cancer biomarkers in clinical diagnostics.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoensaio , Estruturas Metalorgânicas/química , Antígeno Prostático Específico/análise , Anticorpos/química , Grafite/química , Humanos , Peróxido de Hidrogênio/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
7.
Microsc Res Tech ; 76(2): 173-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23180386

RESUMO

The effects of CrO(4)(2-) and MoO(4)(2-) ions on the corrosion behavior of carbon steel in 0.5 M NaCl solution have been studied using electrochemical measurements and atomic force microscopy. The results suggest that both ions have good inhibition effects on the general and pitting corrosion of carbon steel. At the same concentration, the inhibition efficiency of CrO(4)(2-) is higher than that of MoO(4)(2-). The passive film formed by CrO(4)(2-) is also much harder than that formed by MoO(4)(2-). The passive films formed by both ions are nonconductive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA