RESUMO
Background The neonatal heart maintains its entire regeneration capacity within days after birth. Using quantitative phosphoproteomics technology, we identified that SGK3 (serine/threonine-protein kinase 3) in the neonatal heart is highly expressed and activated after myocardial infarction. This study aimed to uncover the function and related mechanisms of SGK3 on cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. Methods and Results The effect of SGK3 on proliferation and oxygen glucose deprivation/reoxygenation- induced apoptosis in isolated cardiomyocytes was evaluated using cardiomyocyte-specific SGK3 overexpression or knockdown adenovirus5 vector. In vivo, gain- and loss-of-function experiments using cardiomyocyte-specific adeno-associated virus 9 were performed to determine the effect of SGK3 in cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. In vitro, overexpression of SGK3 enhanced, whereas knockdown of SGK3 decreased, the cardiomyocyte proliferation ratio. In vivo, inhibiting the expression of SGK3 shortened the time window of cardiac regeneration after apical resection in neonatal mice, and overexpression of SGK3 significantly promoted myocardial repair and cardiac function recovery after ischemia/reperfusion injury in adult mice. Mechanistically, SGK3 promoted cardiomyocyte regeneration and myocardial repair after cardiac injury by inhibiting GSK-3ß (glycogen synthase kinase-3ß) activity and upregulating ß-catenin expression. SGK3 also upregulated the expression of cell cycle promoting genes G1/S-specific cyclin-D1, c-myc (cellular-myelocytomatosis viral oncogene), and cdc20 (cell division cycle 20), but downregulated the expression of cell cycle negative regulators cyclin kinase inhibitor P 21 and cyclin kinase inhibitor P 27. Conclusions Our study reveals a key role of SGK3 on cardiac repair after apical resection or ischemia/reperfusion injury, which may reopen a novel therapeutic option for myocardial infarction.
Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Infarto do Miocárdio , Traumatismo por Reperfusão , Animais , Apoptose , Camundongos , Infarto do Miocárdio/genética , Miócitos Cardíacos , Proteínas Serina-Treonina Quinases/genética , Serina/química , Treonina/química , beta Catenina/genéticaRESUMO
BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.
Assuntos
COVID-19/patologia , Hemorragia/patologia , Transplante de Pulmão , Pulmão/patologia , Linfonodos/patologia , Fibrose Pulmonar/patologia , Linfócitos B/patologia , Linfócitos B/ultraestrutura , Linfócitos B/virologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/cirurgia , Cromatografia Líquida , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Matadoras Naturais/patologia , Células Matadoras Naturais/ultraestrutura , Células Matadoras Naturais/virologia , Pulmão/metabolismo , Pulmão/ultraestrutura , Pulmão/virologia , Linfonodos/metabolismo , Linfonodos/ultraestrutura , Linfonodos/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/ultraestrutura , Macrófagos Alveolares/virologia , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Monócitos/ultraestrutura , Monócitos/virologia , Neutrófilos/patologia , Neutrófilos/ultraestrutura , Neutrófilos/virologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteômica , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/cirurgia , RNA-Seq , SARS-CoV-2 , Índice de Gravidade de Doença , Linfócitos T/patologia , Linfócitos T/ultraestrutura , Linfócitos T/virologia , Espectrometria de Massas em TandemRESUMO
Mammalian spermatogenesis comprises three successive phases: mitosis phase, meiosis phase, and spermiogenesis. During spermiogenesis, round spermatid undergoes dramatic morphogenesis to give rise to mature spermatozoon, including the condensation and elongation of nucleus, development of acrosome, formation of flagellum, and removal of excessive cytoplasm. Although these transformations are well defined at the morphological level, the mechanisms underlying these intricate processes are largely unknown. Here, we report that Iqcg, which was previously characterized to be involved in a chromosome translocation of human leukemia, is highly expressed in the spermatogenesis of mice and localized to the manchette in developing spermatids. Iqcg knockout causes male infertility, due to severe defects of spermiogenesis and resultant total immobility of spermatozoa. The axoneme in the Iqcg knockout sperm flagellum is disorganized and hardly any typical ("9+2") pattern of microtubule arrangement could be found in Iqcg knockout spermatids. Iqcg interacts with calmodulin in a calcium dependent manner in the testis, suggesting that Iqcg may play a role through calcium signaling. Furthermore, cilia structures in the trachea and oviduct, as well as histological appearances of other major tissues, remain unchanged in the Iqcg knockout mice, suggesting that Iqcg is specifically required for spermiogenesis in mammals. These results might also provide new insights into the genetic causes of human infertility.
Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Flagelos/metabolismo , Espermatozoides/citologia , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/deficiência , Proteínas de Ligação a Calmodulina/genética , Proteínas do Citoesqueleto , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Fenótipo , Espermatogênese , Testículo/metabolismo , Testículo/fisiologiaRESUMO
Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis.
Assuntos
Biologia Computacional/métodos , Reprodução/fisiologia , Espermatogênese/fisiologia , Animais , Bases de Dados Genéticas , Ontologia Genética , Humanos , Masculino , Anotação de Sequência Molecular , Proteômica , Espermatozoides/fisiologiaRESUMO
OBJECTIVE: To identify human spermatogenesis-related proteins. DESIGN: Prospective study. SETTING: University research laboratory. PATIENT(S): Three fertile men with normal spermatogenesis, 3 azoospermic patients with sloughing and disorganization of germ cells. INTERVENTION(S): Testicular tissue samples were collected by biopsy after informed consent. MAIN OUTCOME MEASURE(S): The protein expressional profiles of human testes of fertile men and azoospermic patients were compared using a proteomic approach by combining two-dimensional gel electrophoresis analyses and mass spectrometry. Bioinformatic analysis helped to reveal the regulation pathway. Expression of some selected proteins in normal and pathological testes was analyzed by immunohistochemistry. RESULT(S): Ten protein spots were identified as expressing differentially between the normal testes and pathological testes with sloughing and disorganization of germ cells; these included the phospholipid hydroperoxide glutathione peroxidase, peroxiredoxin 4 (Prx4), heat shock protein beta-1 (HSP27), and cathepsin D (CTSD). Bioinformatic analysis revealed that many differentially expressed proteins participate in cellular proliferation, apoptosis, and cell death and helped us to focus on a few of them. Immunohistochemical analysis of Prx4, HSP27, and CTSD confirmed the results obtained by proteomic analysis. CONCLUSION(S): These 10 proteins may help in elucidating the pathways involved in human spermatogenesis.
Assuntos
Azoospermia/metabolismo , Proteoma/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Adulto , Perfilação da Expressão Gênica , Humanos , Masculino , Projetos Piloto , Espermatozoides/patologiaRESUMO
OBJECTIVE: Drug-induced liver damage is a potential complication from using many drugs. The aim of our study was to analyze the etiology and clinical features of drug-induced liver damage, in order to draw more attention to this problem. METHODS: Two hundred and seventy-six cases over a 5-year period in Jiangsu Province Hospital were retrospectively analyzed. RESULTS: A variety of drugs, including traditional Chinese medicines (26.1% of our total cases) and anticancer drugs (17%) caused liver damage. The main clinical manifestations of it were fatigue, nausea, vomiting and jaundice. In 88% of our cases the symptoms were relieved or completely disappeared, but there was still a 5.1% mortality rate. CONCLUSIONS: The clinical features of drug-induced liver damage are of no specificity, and the mortality of it is not low. Liver function should be monitored when suspected drugs are prescribed.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/classificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Hepática Crônica Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
We characterized cellular and molecular mechanisms involved in spermatogenesis following short-term heat exposure of murine testis. For these studies, we utilized a proteomic approach with two-dimensional gel electrophoresis (2DE) analyses and mass spectroscopic identification of proteins with altered expression in mouse testes at different times after heat shock. We established a proteome reference map from 7-wk-old mouse testis linked to a federated proteome database. We used these tools to analyze quantitative variations in the tissue over a time course of 0.5, 2, 6, and 12 h following heat exposure. We separated 108 protein spots expressed differentially between the heat shock tissues and the control mouse testes. Of these spots, we identified 36 by comparing with the control reference map. We then focused on the heterogeneous nuclear ribonucleoproteins (hnRNPs) and the chaperonins containing t-complex polypeptide-1 (CCT). Further analysis in this heat-shocked model suggests numerous potential mechanisms for heat shock-induced spermatogenic disorder.
Assuntos
Hipertermia Induzida/efeitos adversos , Proteínas/análise , Espermatogênese/fisiologia , Testículo/fisiologia , Animais , Western Blotting , Biologia Computacional , Eletroforese em Gel Bidimensional , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Proteômica/métodos , Testículo/citologiaRESUMO
The ovary plays a central role in oogenesis and gonadal hormone secretion. Proteomic analysis is a valuable approach for gaining an increased understanding of the molecular nature of the ovary. In this work, two-dimensional electrophoresis for protein separation followed by matrix-assisted laser desorption/ionization mass spectrometry and database searches, identified 231 protein spots corresponding to 138 individual proteins that were found in gels representing both the follicular and luteal phases. The data were used to construct a database online (http://reprod.njmu.edu.cn/2d). The identified proteins were functionally classified into seven groups: (1) cell signaling/communication, (2) cell division, (3) gene/protein expression, (4) metabolism, (5) cell structure and motility, (6) cell/organism defense, and (7) unclassified. Among the proteins identified, 47% had not been previously reported in the human ovary. In addition, a number of disease-related proteins were identified in this protein map, including some cancer- and polycystic ovarian syndrome-related proteins. Two proteins with phosphorylation were verified by Western blot analysis. Comparison of protein abundance between follicular and luteal stages produced seven protein spots that had been identified in our database. This study provides a preliminary reference map of normal human ovary that will form a basis for comparative studies on normal and pathological conditions of the human ovary and may serve as a potential tool for clinical diagnosis, therapeutics, and prognosis.