Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(4): 2019-2032, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35103734

RESUMO

Chicoric acid (CA), a polyphenolic acid obtained from chicory and purple coneflower (Echinacea purpurea), has been regarded as a nutraceutical to combat inflammation, viruses and obesity. Parkinson's disease (PD) is a common neurodegenerative disorder, and the microbiota-gut-brain axis might be the potential mechanism in the pathogenesis and development of PD. The results obtained in this study demonstrated that oral pretreatments of CA significantly prevented the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunctions and death of nigrostriatal dopaminergic neurons along with the inhibition of glial hyperactivation and the increment in striatal neurotrophins. 16S rRNA sequence results showed that CA significantly reduced MPTP-induced microbial dysbiosis and partially restored the composition of the gut microbiota to normal, including decreased phylum Bacteroidetes and genera Parabacteroide, as well as increased phylum Firmicutes, genera Lactobacillus and Ruminiclostridium. Besides, CA promoted colonic epithelial integrity and restored normal SCFA production. We also observed that proinflammatory cytokines such as TNF-α and IL-1ß in the serum, striatum and colon were reduced by CA, indicating that CA prevented neuroinflammation and gut inflammation, in which the suppression of the TLR4/MyD88/NF-κB signaling pathway might be the underlying molecular mechanism. These findings demonstrated that CA had neuroprotective effects on MPTP-induced PD mice possibly via modulating the gut microbiota and inhibiting inflammation throughout the brain-gut axis.


Assuntos
Ácidos Cafeicos/uso terapêutico , Echinacea , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Succinatos/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Ácidos Cafeicos/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Fitoterapia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Succinatos/farmacologia , Receptor 4 Toll-Like/metabolismo
2.
Eur J Med Chem ; 213: 113162, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493826

RESUMO

Based on the previous research results of our research group, to further improve the anti-inflammatory activity of hesperetin, we substituted triazole at the 7-OH branch of hesperetin. We also evaluated the anti-inflammatory activity of 39 new hesperetin derivatives. All compounds showed inhibitory effects on nitric oxide (NO) and inflammatory factors in lipopolysaccharide-induced RAW264.7 cells. Compound d5 showed a strong inhibitory effect on NO (half maximal inhibitory concentration = 2.34 ± 0.7 µM) and tumor necrosis factor-α, interleukin (IL)-1ß, and (IL-6). Structure-activity relationships indicate that 7-O-triazole is buried in a medium-sized hydrophobic cavity that binds to the receptor. Compound d5 can also reduce the reactive oxygen species production and significantly inhibit the expression of inducible NO synthase and cyclooxygenase-2 through the nuclear factor-κB signaling pathway. In vivo results indicate that d5 can reduce liver inflammation in mice with acute liver injury (ALI) induced by CCI4. In conclusion, d5 may be a candidate drug for treating inflammation associated with ALI.


Assuntos
Desenho de Fármacos , Hesperidina/farmacologia , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Triazóis/farmacologia , Animais , Tetracloreto de Carbono , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hesperidina/síntese química , Hesperidina/química , Inflamação/metabolismo , Inflamação/patologia , Fígado/lesões , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Óxido Nítrico/análise , Óxido Nítrico/biossíntese , Células RAW 264.7 , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
3.
Nat Prod Res ; 35(22): 4323-4330, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31960729

RESUMO

The anti-tumor effects of two compounds purified from Sapindus mukorossi Gaertn. (S. mukorossi.) on breast cancer in vitro were observed. Their chemical structures were identified as sesquiterpene glycosides, namely, Mukurozioside IIa and Mukurozioside IIb. The results of XTT assay indicated that their inhibition rates against three cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-435s) reached approximately 80% at a concentration of 200 µg/mL, which were higher than that of cyclophosphamide (below 40% at 200 µg/mL), and their 50% inhibiting concentrations were ranged from 120.73 to 154.01 µg/mL, indicating their inhibition were weaker than their parent fraction. Furthermore, the mechanism on breast cancer was predicted, and 22 targets including PTPN1, IL2 and VEGFA were relatively important. These results illustrated the anti-breast cancer activity of S. mukorossi was related to the two compounds with the structure of sesquiterpene glycosides, but they did not represent the full activity of their parent fraction.


Assuntos
Antineoplásicos , Sapindus , Sesquiterpenos , Glicosídeos/farmacologia , Extratos Vegetais , Sesquiterpenos/farmacologia
4.
J Exp Med ; 213(8): 1555-70, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27432944

RESUMO

Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B-lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b-deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Lectinas Tipo C/imunologia , Proteínas Proto-Oncogênicas c-cbl/imunologia , Receptores Imunológicos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Candidíase/genética , Humanos , Imunidade Inata , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Proteólise , Proteínas Proto-Oncogênicas c-cbl/genética , Receptores Imunológicos/genética , Quinase Syk/genética , Quinase Syk/imunologia , Ubiquitinação/genética , Ubiquitinação/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA