Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 838618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572554

RESUMO

Purpose: Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods: The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results: PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion: TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.


Assuntos
Choque Hemorrágico , Animais , Linfócitos T CD4-Positivos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , RNA Mensageiro , Choque Hemorrágico/complicações , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like
2.
Asian J Androl ; 14(4): 536-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580637

RESUMO

Persistent activation of Survivin and its overexpression contribute to the formation, progression and metastasis of several different tumor types. Therefore, Survivin is an ideal target for RNA interference mediated-growth inhibition. Blockade of Survivin using specific short hairpin RNAs (shRNA) can significantly reduce prostate tumor growth. RNA interference does not fully ablate target gene expression, owing to the idiosyncrasies associated with shRNAs and their targets. To enhance the therapeutic efficacy of Survivin-specific shRNA, we employed a combinatorial expression of Survivin-specific shRNA and gene associated with retinoid-interferon-induced mortality-19 (GRIM-19). Then, the GRIM-19 coding sequences and Survivin-specific shRNAs were used to create a dual expression plasmid vector and were carried by an attenuated strain of Salmonella enteric serovar typhimurium (S. typhimurium) to treat prostate cancer in vitro and in vivo. We found that the co-expressed Survivin-specific shRNA and GRIM-19 synergistically and more effectively inhibited prostate tumor proliferation and survival, when compared with treatment with either single agent alone in vitro and in vivo. This study has provided a novel cancer gene therapeutic approach for prostate cancer.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma/terapia , Terapia Genética , Proteínas Inibidoras de Apoptose/metabolismo , NADH NADPH Oxirredutases/metabolismo , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/uso terapêutico , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Carcinoma/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos , NADH NADPH Oxirredutases/genética , Plasmídeos , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Salmonella typhimurium , Survivina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA