Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 454: 131491, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121038

RESUMO

This present study investigated pork bone-derived biochar as a promising amendment to reduce Cd accumulation and alleviate Cd-induced oxidative stress in rice. Micro/nanoscale bone char (MNBC) pyrolyzed at 400 °C and 600 °C was synthesized and characterized before use. The application rates for MNBCs were set at 5 and 25 g·kg-1 and the Cd exposure concentration was 15 mg·kg-1. MNBCs increased rice biomass by 15.3-26.0% as compared to the Cd-alone treatment. Both types of MNBCs decreased the bioavailable Cd content by 27.4-54.8%; additionally, the acid-soluble Cd fraction decreased by 10.0-12.3% relative to the Cd alone treatment. MNBC significantly reduced the cell wall Cd content by 50.4-80.2% relative to the Cd-alone treatment. TEM images confirm the toxicity of Cd to rice cells and that MNBCs alleviated Cd-induced damage to the chloroplast ultrastructure. Importantly, the addition of MNBCs decreased the abundance of heavy metal tolerant bacteria, Acidobacteria and Chloroflexi, by 29.6-41.1% in the rhizosphere but had less impact on the endophytic microbial community. Overall, our findings demonstrate the significant potential of MNBC as both a soil amendment for heavy metal-contaminated soil remediation and for crop nutrition in sustainable agriculture.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Oryza/química , Rizosfera , Metais Pesados/análise , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA