Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133672, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325099

RESUMO

Trimethylamine (TMA), Dimethylamine (DMA), Ammonia (NH3) and formaldehyde (HCHO) are typical volatile gases and able to cause great damage to the environment and the human body, and they may appear along in some particular cases such as marine meat spoilage. However, gas sensors can detect all the 4 hazardous gases simultaneously have rarely been reported. In this study, a quartz crystal microbalance (QCM) gas sensor modified with La-Ce-MOF was employed for the detection of 4 target gases (TMA, DMA, NH3 and HCHO). The sensor exhibited excellent stability (63 days), selectivity (3.51 Hz/(µmoL/L) for TMA, 4.19 Hz/(µmoL/L) for DMA, 3.14·Hz/(µmoL/L) for NH3 and 3.08·Hz/(µmoL/L) for HCHO), robustness and sensitivity towards target gases detection. Vienna Ab-initio Simulation Package calculations showed that this superior sensing performance was attributed to the preferential adsorption of target gas molecules onto the nanomicrospheres via hydrogen bond. The adsorption energy was - 0.4329 eV for TMA, - 0.5204 eV for DMA, - 0.6823 eV for NH3 and - 0.7576 eV for HCHO, all of which are physically adsorbed. In the detection of hazardous gases, sensor surface active sites were often susceptible to environmental factors and interfering substances, leading to a decrease in the sensitivity of the gas sensor, which in turn affects the signal accuracy in practical applications. This issue has been effectively addressed and the sensor has been implemented for the assessment of the salmon meat freshness, which may contribute to further advancements in the development of QCM gas sensors for monitoring food quality, human beings health and environment safety.

2.
J Agric Food Chem ; 71(20): 7847-7857, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37170887

RESUMO

In this work, broad-spectrum aptamers for organophosphorus pesticides (OPs) were obtained by alternate target systematic evolution of ligands by exponential enrichment screening. The secondary and tertiary structure analyses of the aptamer inferred that the neck-loop structure formed a G-triplex structure with the target. In addition, optimization of the sheared aptamer resulted in a stronger affinity (Kd = 86.74 nM), which was increased by 2 orders of magnitude compared to similar aptamers. A novel electrochemical biosensor was prepared by modifying an aptamer labeled with an electroactive substance (methylene blue) on the surface of nanoporous carbon containing Fe-Co (Fe-Co/NPC). When a target bound to the aptamer, a G-triplex structure was formed close to the electrode surface. The aptamer phosphate backbone labeled with methylene blue enhanced the electron-transfer efficiency and resulted in signal changes. The biosensor exhibited an excellent sensitivity (7.32 fM) and a wide detection range (1 × 10-13 to 1 × 10-3 M) for OPs under optimal conditions, enabling simultaneous detection of multiple OPs in vegetables.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoporos , Praguicidas , Carbono , Compostos Organofosforados/análise , Aptâmeros de Nucleotídeos/química , Praguicidas/química , Azul de Metileno , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas
3.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957269

RESUMO

In this work, we reported a rapid and sensitive fluorescence assay in homogenous solution for detecting organophosphorus pesticides by using tetramethylrhodamine (TAMRA)-labeled aptamer and its complementary DNA (cDNA) with extended guanine (G) bases. The hybridization of cDNA and aptamer drew TAMRA close to repeated G bases, then the fluorescence of TAMRA was quenched by G bases due to the photoinduced electron transfer (PET). Upon introducing the pesticide target, the aptamer bound to pesticide instead of cDNA because of the competition between pesticide and cDNA. Thus, the TAMRA departed from G bases, resulting in fluorescence recovery of TAMRA. Under optimal conditions, the limits of detection for phorate, profenofos, isocarbophos, and omethoate were 0.333, 0.167, 0.267, and 0.333 µg/L, respectively. The method was also used in the analysis of profenofos in vegetables. Our fluorescence design was simple, rapid, and highly sensitive, which provided a means for monitoring the safety of agricultural products.


Assuntos
Aptâmeros de Nucleotídeos , Praguicidas , Aptâmeros de Nucleotídeos/genética , DNA Complementar , Fluorescência , Compostos Organofosforados/análise , Praguicidas/análise
4.
J Hazard Mater ; 440: 129707, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35986944

RESUMO

For the visual detection of four organophosphorus pesticides (OPs), a colorimetric aptasensor was developed based on aptamer-mediated bimetallic metal-organic frameworks (MOFs) nano-polymers. Fe-Co magnetic nanoparticles (MNPs) and Fe-N-C nanozymes were prepared based on pyrolytic reaction, and were labeled with broad spectrum aptamers and complementary chains of organophosphorus pesticides respectively. The hybridization of aptamers and complementary chains led to the formation of nano-polymers. In the presence of target pesticides, they competed with complementary chains for aptamers on Fe-Co MNPs, resulting in a large number of Fe-N-C nanozymes signal labels being released into the supernatant. Fe-N-C nanozymes showed similar activity to peroxidase and catalyzed the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) color system to turn the solution blue-green under mild conditions. The magnetic probes had good selectivity and sensitivity, and were easily separated by magnetic absorption. The sensor functioned well under optimal conditions, demonstrating good stability and specificity for four pesticides: phorate, profenofos, isocarbophos and omethoate, and the detection limits of four pesticides were as low as 0.16 ng/mL, 0.16 ng/mL, 0.03 ng/mL and 1.6 ng/mL respectively, and the recovery rate of OPs residue in vegetable samples was satisfactory. The work described here provided a simple, rapid and sensitive way to construct a biosensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Praguicidas , Aptâmeros de Nucleotídeos/química , Colorimetria/métodos , Peróxido de Hidrogênio , Limite de Detecção , Estruturas Metalorgânicas/química , Compostos Organofosforados , Peroxidases , Praguicidas/análise , Forato
5.
Anal Bioanal Chem ; 414(20): 6127-6137, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35804073

RESUMO

In order to address the widespread concerns with food safety such as adulteration and forgery in the edible oil field, this study developed a fluorescence polarization immunoassay (FPIA) based on a monoclonal antibody in a homogeneous solution system for determination of capsaicinoids in gutter cooking oil by using chemically stable capsaicinoids as an adulteration marker. The prepared fluoresceinthiocarbamyl ethylenediamine (EDF) was coupled with capsaicinoid hapten C, and the synthesized tracer was purified by thin-layer chromatography (TLC) and showed good binding to the monoclonal antibody CPC Ab-D8. The effects of concentration of tracer and recognition components, type and pH of buffer and incubation time on the performance of FPIA were studied. The linear range (IC20 to IC80) was 3.97-97.99 ng/mL, and the half maximal inhibitory concentration (IC50) was 19.73 ng/mL, and the limit of detection (LOD) was 1.56 ng/mL. The recovery rates of corn germ oil, soybean oil and peanut blend oil were in the range of 94.7-132.3%. The experimental results showed that the fluorescence polarization detection system could realize the rapid detection of capsaicinoids, and had the potential to realize on-site identification of gutter cooking oil. As a universal monoclonal antibody, CPC Ab-D8 can also specifically identify capsaicin and dihydrocapsaicin, so the proposed method can be used to quickly monitor for the presence of gutter cooking oil in normal cooking oil.


Assuntos
Culinária , Alimentos , Anticorpos Monoclonais , Imunoensaio de Fluorescência por Polarização/métodos , Limite de Detecção
6.
Anal Methods ; 14(10): 1051-1059, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35195143

RESUMO

The massive use of organophosphorus pesticides (OPs) poses a great threat to food safety, human health and environmental protection. As there are many kinds of pesticides, their detection is facing a severe challenge. The simultaneous detection of multiple organophosphorus pesticides in one test is a problem to be solved at present. In this paper, a time-resolved fluorescent immunochromatographic (TRFIA) strip is prepared by using broad-specificity antibodies (Abs) of OPs as the recognition element. Abs were connected to europium oxide latex microspheres using sheep anti-mouse antibodies (SaMIgG) to form an indirect probe. This strategy could effectively realize signal amplification, and could save the amount and protect the activity of Abs. After the detection, the color change of the test line (T-line) was observed to make qualitative judgment under UV-light (365 nm). Then, the images of the positive sample were analyzed by using ImageJ to complete the quantitative detection. Under optimal construction and operating conditions, the limit of detection of the strip could reach 0.53 ng g-1. And the TRFIA strip performed well in the additive test of vegetable samples. It is inexpensive to prepare, convenient to carry, and easy to operate. More importantly, it improves the detection efficiency and meets the needs of rapid field testing of a large number of samples.


Assuntos
Praguicidas , Animais , Anticorpos/química , Cromatografia de Afinidade , Camundongos , Compostos Organofosforados/análise , Compostos Organofosforados/química , Praguicidas/análise , Ovinos , Verduras/química
7.
Analyst ; 147(4): 712-721, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35080213

RESUMO

In this work, a new type of Au-tetrahedral DNA nanostructure (Au-TDN) was originally proposed and successfully applied in an electrochemiluminescence aptasensor to detect organophosphorus pesticides (Ops). The aptamers modified with -SH could be covalently bonded with gold nanoparticles (AuNPs) to form a tetrahedron structure, and there were independent probes at each vertex of the tetrahedron, which could increase the probability of specific binding with Ops. The originally designed structure could not only maintain a stable tetrahedral configuration, but also combined with the target to improve the sensitivity of the sensor. Meanwhile, silver nanoparticles (AgNPs) could catalyze the chemical reaction between luminol and H2O2 to generate a variety of intermediates called reactive oxygen species (ROS) for signal enhancement. Factors that had important influences on the aptasensor, such as the concentration of Au-TDN, the incubation time, and the pH value of the buffer, were optimized in this trial. According to the final results, the limit of detection (LOD) of 3 pg mL-1 (S/N = 3) for methyl parathion, the LOD of 0.3 pg mL-1 (S/N = 3) for parathion and the LOD of 0.03 pg mL-1 (S/N = 3) for phoxim were obtained, respectively. Moreover, the novel tetrahedral structure could be replaced by different types of aptamers to expand its application range and lay a foundation for the development of portable rapid detection devices for pesticide residues.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Praguicidas , DNA , Técnicas Eletroquímicas , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Luminol , Compostos Organofosforados , Prata
8.
Mikrochim Acta ; 187(1): 36, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820139

RESUMO

An aptasensor is described for electrochemical determination of organophosphorus pesticides (OPPs), specifically of profenofos, phorate, isocarbophos, and omethoate. The method uses a hairpin aptamer as signalling donor. Its 5' and 3' ends were modified with amino groups and the redox probe ferrocene (Fc), respectively. A nanocomposite consisting of graphene oxide and chitosan (GO-chit) was used to immobilize the aptamer via formation of an amide link. Its good conductivity facilitates monitoring of the electrochemical responses. Upon addition of an OPP, it will be bound by the aptamer. This results in an opening of the hairpin structure. Thus, Fc is shifted away from the surface of the electrode. As a result, the impedance increases and the redox signal of Fc decreases. The electrochemical performance, binding capacity and response of the aptasensor for profenofos, phorate, isocarbophos and omethoate were studied. The limits of detection are as low as 0.01, 0.1, 0.01 and 0.1 nM, respectively. Graphical abstract Schematic representation of an electrochemical aptasensor prepared by immobilizing ferrocene (Fc) labeled hairpin aptamer (HP) on the surface of graphene oxide-chitosan (GO-chit) modified electrode, and its application to the determination of organophosphorus pesticides (OPPs) by voltammetry.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos Organofosforados/análise , Praguicidas/análise , Quitosana/química , Grafite/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA