Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 136153, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362438

RESUMO

Polysaccharides serve as a source of energy for organisms and play a crucial role in various life activities, exhibiting a wide array of biological functions. To develop bioactive polysaccharides for combating cancer, PGP40-2B, a homogeneous polysaccharide with a molecular weight of 7.05 × 103 g/mol, has been isolated from Platycodon grandiflorum, which is a traditional medicinal and edible plant with multiple functions. PGP40-2B was found to mainly formed from several fragments including →2)-α-l-Araf-(1→, →5)-α-l-Araf-(1→, →3,4)-α-l-Rhap-(1→, →4)-α-d-GalpA-(1→, →6)-α-d-Glcp-(1→, and α-d-Galp-(1→. In addition to the structural characteristics characterized by various techniques, PGP40-2B was biologically assessed using zebrafish models and was found to exhibit in vivo antitumor effects. Subsequent mechanism studies suggested that the antitumor activity in vivo of PGP40-2B was not caused by cytotoxic mechanisms but was related to its targeting of vascular endothelial growth factor (VEGF) and programmed cell death protein 1 (PD-1) to inhibit angiogenesis and activate immunity.

2.
Int J Biol Macromol ; 280(Pt 1): 135347, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260657

RESUMO

With the continuous advancement of nanotechnology, the application of gold nanorods (AuNRs) functionalized with polysaccharides in the realm of cancer photothermal therapy is garnering increasing attention. To harness photothermal therapy for cancer treatment, FLP-MPBA-AuNRs were successfully synthesized in this study for the first time, utilizing Poria cocos polysaccharides (FLP), mercaptophenylboronic acid (MPBA), and gold nanorods (AuNRs). FLP-MPBA-AuNRs are a nanomaterial characterized by a unique rod-shaped structure, featuring a long diameter of 29.3 nm and a short diameter of 6.5 nm, which conferred exceptional photothermal stability and remarkable photothermal conversion efficiency. Under near-infrared light irradiation, FLP-MPBA-AuNRs elicited significant photothermal effects, effectively curtailing the proliferation of various cancer cells. Additionally, FLP-MPBA-AuNRs impeded cancer progression by inducing cell apoptosis and releasing reactive oxygen species (ROS). Furthermore, FLP-MPBA-AuNRs suppressed the metastasis and growth of cancer cells in zebrafish models. In summary, FLP-MPBA-AuNRs showcased immense potential in cancer therapy by inhibiting tumor cell growth through photothermal and photodynamic mechanisms.

3.
Chin J Nat Med ; 22(9): 842-853, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39326978

RESUMO

Eight novel clerodane diterpenoids (1-8) were isolated from the twigs of Casearia graveolens. Their structures were elucidated through comprehensive nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and electronic circular dichroism (ECD) analyses. In addition to structural determination, surface plasmon resonance (SPR) assays were conducted to investigate molecular interactions, revealing that compound 8 exhibited high affinity for vascular endothelial growth factor receptor 2 (VEGFR2), a key regulator of tumor angiogenesis. Subsequent in vivo experiments demonstrated that compound 8 effectively inhibited angiogenesis and displayed significant antitumor activity by suppressing tumor proliferation and metastasis in zebrafish xenograft models. These findings suggest that compound 8 holds promise as an anticancer lead compound targeting VEGFR-2 to obstruct tumor angiogenesis.


Assuntos
Inibidores da Angiogênese , Casearia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Peixe-Zebra , Animais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Estrutura Molecular , Casearia/química , Neovascularização Patológica/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Linhagem Celular Tumoral , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Angiogênese
4.
Int J Biol Macromol ; 279(Pt 4): 135300, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236942

RESUMO

Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.


Assuntos
Lentinano , Nanopartículas , Nanopartículas/química , Humanos , Lentinano/farmacologia , Lentinano/química , Animais , Concentração de Íons de Hidrogênio , Camundongos , Apoptose/efeitos dos fármacos , Genisteína/farmacologia , Genisteína/química , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Células A549 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Terapia Combinada , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia/métodos
5.
Chem Biol Interact ; 402: 111191, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121898

RESUMO

Hepatocellular carcinoma (HCC) is a significant global health concern, with high rates of morbidity and mortality. Bucidarasin A, a natural diterpenoid, has been shown to exert notable cytotoxic effects across a range of tumor cell lines. However, the underlying mechanisms responsible for this cytotoxicity remain unclear. In this study, we sought to elucidate the antitumor mechanisms of bucidarasin A, a natural diterpenoid derived from Casearia graveolens, with a particular focus on its effects on HCC. Furthermore, we employed surface plasmon resonance (SPR), molecular docking, and cellular thermal shift assay (CETSA) to gain further insight into the target protein of bucidarasin A. Our findings revealed that bucidarasin A exhibited pronounced cytotoxicity towards HepG2 cells. In vitro analysis indicated that bucidarasin A interrupted the cell cycle at the S phase and inhibited the proliferation and metastasis of HepG2 cells by modulating the FAK and STAT3 signaling pathways. Moreover, in vivo studies demonstrated that bucidarasin A not only exhibited antitumor effects but also impeded neovascularization, a finding that was corroborated by SPR interactions between vascular endothelial growth factor (VEGF) and bucidarasin A. This research substantiated that bucidarasin A, a clerodane diterpenoid, held promise as a therapeutic candidate against HCC, showcasing substantial antitumor efficacy both in vitro and in vivo through direct targeting of the STAT3 and FAK signaling pathways.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Diterpenos , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Fator de Transcrição STAT3/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Diterpenos/farmacologia , Diterpenos/química , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos
6.
Fitoterapia ; 177: 106125, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019239

RESUMO

Two previously unreported lindenane sesquiterpene dimers (1 and 2) with a rare skeleton containing an oxaspiro[4.5]decane moiety were isolated from the roots of Chloranthus holostegius var. trichoneurus. Their structures were elucidated by HRESIMS, NMR, ECD, and NMR quantum chemical calculations, along with DP4+ probability analysis. In bioassay, compound 1 exhibited significant activity to reverse the multidrug resistance (MDR)in MCF-7/ADR cells, with an IC50 value of 4.4 µM. Further mechanistic studies revealed that compound 1 combined with doxorubicin could induce apoptosis of MCF-7/ADR cells and block the cell cycle in the G2/M phase. Mechanistically, compound 1 could inhibit the efflux function of P-glycoprotein (P-gp) using the zebrafish model. Finally, the enhanced chemotherapeutic effects of doxorubicin were further confirmed by in vivo zebrafish xenograft experiments.


Assuntos
Apoptose , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Raízes de Plantas , Sesquiterpenos , Peixe-Zebra , Animais , Humanos , Estrutura Molecular , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Raízes de Plantas/química , Células MCF-7 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Magnoliopsida/química , China
7.
Int J Biol Macromol ; 275(Pt 2): 133460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945321

RESUMO

Cancer poses a significant threat to human health, and monotherapy frequently fails to achieve optimal therapeutic outcomes. Based on this premise, porphyran (PHP), a marine polysaccharide with immunomodulatory function, was used as a framework to coat gold nanorods and construct a novel nanomedicine (PHP-MPBA-GNRs) combining photothermal therapy and immunotherapy. In this design, PHP not only maintained the dispersion stability and photothermal stability of gold nanorods but also could be released under weakly acidic conditions to activate anti-tumor immunity. In vivo studies have shown that PHP-MPBA-GNRs can effectively inhibit tumor cell proliferation and reduce metastasis under near-infrared (NIR) light irradiation. Preliminary mechanistic investigations revealed that PHP-MPBA-GNRs could increase reactive oxygen species (ROS) and induce apoptosis in cancer cells. The PHP in PHP-MPBA-GNRs can also activate dendritic cells and up-regulate the expression of co-stimulatory molecules and antigen-presenting complexes. All biological experiments, including in vivo tests, demonstrated that PHP-MPBA-GNRs achieved a combination of photothermal therapy and immunotherapy for tumors.


Assuntos
Ouro , Imunoterapia , Nanotubos , Terapia Fototérmica , Ouro/química , Nanotubos/química , Imunoterapia/métodos , Animais , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Fototerapia/métodos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/imunologia , Sefarose/análogos & derivados
8.
Int J Biol Macromol ; 273(Pt 2): 132807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825289

RESUMO

It is well known that Rosa roxburghii, as a homology of both medicine and food, is rich in polysaccharides. To discover bioactive macromolecules for combating cancer, the polysaccharides in R. roxburghii were investigated, leading to the purification of a polysaccharide (RRTP80-1). RRTP80-1 was measured to have an average molecular weight of 8.65 × 103 g/mol. Monosaccharide composition analysis revealed that RRTP80-1 was formed from three types of monosaccharides including arabinose, glucose, and galactose. Methylation and GC-MS analysis suggested that the backbone of RRTP80-1 consisted of →5)-α-l-Araf-(1→, →6)-α-d-Glcp-(1→, →2,5)-α-l-Araf-(1→, →4,6)-ß-d-Galp-(1→, and →3)-α-l-Araf-(1→, with branch chains composed of α-l-Araf-(1→. In vivo studies indicated that RRTP80-1 exhibited inhibitory activity against the growth and proliferation of neoplasms in the zebrafish tumor xenograft model by suppressing angiogenesis. Additionally, RRTP80-1 was found to upregulate reactive oxygen species (ROS) and nitric oxide (NO) production levels in zebrafish models. All these studies suggest that RRTP80-1 activates the immune system to inhibit tumors. The potential role of the newly discovered homogeneous polysaccharide RRTP80-1 in cancer treatment was preliminarily clarified in this study.


Assuntos
Monossacarídeos , Polissacarídeos , Rosa , Peixe-Zebra , Rosa/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Humanos , Monossacarídeos/análise , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Peso Molecular , Metilação , Óxido Nítrico/metabolismo
9.
Int J Biol Macromol ; 272(Pt 1): 132543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788870

RESUMO

Some macrofungi have a long history of being used as traditional or folk medicines, making significant contributions to human health. To discover bioactive molecules with potential anticancer properties, a homogeneous heteropolysaccharide (FOBP90-1) was purified from the medicinal macrofungus Fomitopsis officinalis. FOBP90-1 was found to have a molecular weight of 2.87 × 104 g/mol and mainly consist of →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, →6)-ß-d-Glcp-(1→, α-d-Manp-(1→, and 3-O-Me-α-l-Fucp-(1→ according to UV, FT-IR, methylation analysis, and NMR data. In addition to its structural properties, FOBP90-1 displayed anticancer activity in zebrafish models. The following mechanistic analysis discovered that the in vivo antitumor effect was linked to immune activation and angiogenesis inhibition. These effects were mediated by the interactions of FOBP90-1 with TLR-2, TLR-4, PD-L1, and VEGFR-2, as determined through a series of experiments involving cells, transgenic zebrafish, molecular docking simulations, and surface plasmon resonance (SPR). All the experimental findings have demonstrated that FOBP90-1, a purified fungal polysaccharide, is expected to be utilized as a cancer treatment agent.


Assuntos
Antineoplásicos , Coriolaceae , Polissacarídeos Fúngicos , Peixe-Zebra , Animais , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Humanos , Coriolaceae/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Simulação de Acoplamento Molecular
10.
Int J Biol Macromol ; 267(Pt 2): 131320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569989

RESUMO

Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-ß-d-Manp-(1→, →6)-ß-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Polissacarídeos Fúngicos , Peixe-Zebra , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Humanos , Coriolaceae/química , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Angiogênese
11.
Int J Biol Macromol ; 263(Pt 2): 130242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368974

RESUMO

Glehnia littoralis is an edible plant with significant medicinal value. To further elucidate the potential functional components for developing antitumor agents or functional foods, the polysaccharides in this plant were investigated, and a homogeneous polysaccharide, GLP90-2, was obtained through extraction and ethanol precipitation. By employing methylation, GC-MS, FT-IR, and NMR analysis, GLP90-2 was identified as an arabinan having a molecular weight of 7.76 × 103 g/mol and consisting of three types of residues: α-l-Araf-(1→, →5)-α-l-Araf-(1→, and →3,5)-α-l-Araf-(1→. The subsequent functional analysis revealed that GLP90-2 suppressed tumor development and metastasis in a zebrafish model. Mechanistic studies have shown that GLP90-2 promoted the maturation of DC2.4 cells and macrophages and enhanced the expression of immune-related cytokines, which may be attributed to the interaction between GLP90-2 and TLR-4. Additionally, GLP90-2 exhibited a strong interaction with PD-1, contributing to the activation of immunity. Furthermore, GLP90-2 suppressed angiogenesis in the transgenic zebrafish model, and this impact may be ascribed to the modulation of the VEGF/VEGFR-2 signaling pathway. All the results indicate that GLP90-2 demonstrates a strong tumor immunotherapy effect in vivo and has high potential for development.


Assuntos
Apiaceae , Neoplasias , Animais , Peixe-Zebra , Espectroscopia de Infravermelho com Transformada de Fourier , Angiogênese , Polissacarídeos/farmacologia , Polissacarídeos/química
12.
Carbohydr Polym ; 331: 121831, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388048

RESUMO

An undisclosed polysaccharide, BCP80-2, was isolated from Belamcanda chinensis (L.) DC. Structural investigation revealed that BCP80-2 consists of ten monosaccharide residues including t-α-Araf-(1→, →3,5)-α-Araf-(1→, →5)-α-Araf-(1→, →4)-ß-Xylp-(1→, →3)-α-Rhap-(1→, →4)-ß-Manp-(1→, t-ß-Glcp-(1→, →6)-α-Glcp-(1→, t-ß-Galp-(1→, and→3)-α-Galp-(1→. In vivo activity assays showed that BCP80-2 significantly suppressed neoplasmic growth, metastasis, and angiogenesis in zebrafish. Mechanistic studies have shown that BCP80-2 inhibited cell migration of HepG2 cells by suppressing the FAK signaling pathway. Moreover, BCP80-2 also activated immunomodulation and upregulated the secretion of co-stimulatory molecules CD40, CD86, CD80, and MHC-II. In conclusion, BCP80-2 inhibited tumor progression by targeting the FAK signaling pathway and activating CD40-induced adaptive immunity.


Assuntos
Arabinose , Neoplasias Hepáticas , Animais , Sequência de Carboidratos , Peixe-Zebra , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Neoplasias Hepáticas/tratamento farmacológico
13.
J Antibiot (Tokyo) ; 77(4): 257-263, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38243062

RESUMO

Using mass spectrometry (MS)-guided isolation methods, a new thiodiketopiperazine derivative (1) and exserohilone (2) were isolated from an EtOAc-extract of Setosphaeria rostrata culture medium. The chemical structure of the new compound was elucidated by MS and NMR spectroscopy, and the absolute configurations were established by the quantum mechanical calculations of electronic circular dichroism. All isolated compounds were examined for their effects on reactive oxygen species (ROS) production, matrix metalloproteinase 1 (MMP-1) secretion, and procollagen type I α1 secretion in tumor necrosis factor (TNF)-α-induced human dermal fibroblasts. Compound 1 and exserohilone (2) exhibited the inhibition of TNF-α-induced ROS generation and MMP-1 secretion. Additionally, compound 1 and exserohilone (2) increased the procollagen type I α1 secretion. Compound 1 docked computationally into the active site of MMP-1 (-6.0 kcal/mol).


Assuntos
Ascomicetos , Metaloproteinase 1 da Matriz , Fator de Necrose Tumoral alfa , Humanos , Metaloproteinase 1 da Matriz/farmacologia , Espécies Reativas de Oxigênio , Fibroblastos
14.
Bioorg Chem ; 143: 107070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190796

RESUMO

Three new fusidane-type nortriterpenoids, simplifusinolide A, 24-epi simplifusinolide A, and simplifusidic acid L (1-3), were isolated from the EtOAc extract of the Arctic marine-derived fungus Simplicillium lamellicola culture medium, together with fusidic acid (4) and 16-O-deacetylfusicid acid (5). The structures of the isolated compounds were elucidated by NMR and MS analyses. The absolute configurations of compounds 1-3 were established by the quantum mechanical calculations of electronic circular dichroism and gauge-including atomic orbital NMR chemical shifts, followed by DP4 + analysis. Benign prostatic hyperplasia (BPH) is a major urological disorder in men worldwide. The anti-BPH potentials of the isolated compounds were evaluated using BPH-1 and WPMY-1 cells. Treatment with simplifusidic acid L (3) and fusidic acid (4) significantly downregulated the mRNA levels of the androgen receptor (AR) and its downstream effectors, inhibiting the proliferation of BPH-1 cells. Specifically, treatment with 24-epi simplifusinolide A (2) significantly suppressed the cell proliferation of both BPH-1 and DHT-stimulated WPMY-1 cells by inhibiting AR signaling. These results suggest the potential of 24-epi simplifusinolide A (2), simplifusidic acid L (3) and fusidic acid (4) as alternative agents for BPH treatment by targeting AR signaling.


Assuntos
Hypocreales , Hiperplasia Prostática , Masculino , Humanos , Hiperplasia Prostática/tratamento farmacológico , Ácido Fusídico/farmacologia , Extratos Vegetais/farmacologia , Proliferação de Células
15.
Int J Biol Macromol ; 256(Pt 1): 128057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956805

RESUMO

Fucoidan (FU), a natural marine polysaccharide, is an immunomodulator with great potential in tumor immunotherapy. In this work, a FU encapsulated nanoparticle named QU@FU-TS was developed, which contained the anticancer phytochemical quercetin (QU) and had the potential for cancer chemo-immunotherapy. QU@FU-TS were constructed through molecular self-assembly using green material tea saponin (TS) as the linking molecule. The molecular dynamics (MD) simulation showed that QU was bound to the hydrophobic tail of TS. At the same time, FU spontaneously assembled with the hydrophilic head of TS to form the outer layer of the QU@FU-TS. The molecular interactions between QU and TS were mainly π-stacking and hydrogen bonds. The bonding of FU and TS was maintained through the formation of multiple hydrogen bonds between the sulfate ester group and the hydroxy group. The inhibitory effects of QU@FU-TS on A549 cell proliferation were more potent than that by free QU. The antitumor activity of QU@FU-TS was mediated through various mechanisms, including the induction of oxidative stress, blocking cell cycle progression, and promoting cell apoptosis. Moreover, QU@FU-TS has been demonstrated to impede the proliferation and migration of cancer cells in vivo. The expression levels of macrophage surface markers increased under the treatment of QU@FU-TS, suggesting the potential of QU@FU-TS to serve as an immunotherapeutic agent by promoting macrophage activation.


Assuntos
Nanopartículas , Neoplasias , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/química , Linhagem Celular Tumoral , Nanopartículas/química , Polissacarídeos/farmacologia , Imunoterapia , Neoplasias/tratamento farmacológico
16.
Int J Biol Macromol ; 255: 127854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935290

RESUMO

In recent years, the application of nanoparticles formed by coupling metal nanomaterials of photothermal therapy with polysaccharides as modified carriers in the targeted treatment of liver cancer has attracted extensive attention. In the present work, an undescribed homogeneous polysaccharide BCP50-2 was obtained from Belamcanda chinensis (L.) DC. The structural analysis displayed that BCP50-2 contained galactose and a small amount of arabinose, and was mainly composed of six monosaccharide residues: →3,5)-α-l-Araf-(1→, →4)-ß-d-Galp-(1→, →4,6)-ß-d-Galp-(1→, →3)-α-l-Galp-(1→, terminal α-l-Araf, and terminal ß-d-Galp. To enhance the antitumor activity of BCP50-2, BCP50-2-AuNRs were prepared by coupling BCP50-2 with gold nanorods for the treatment of liver cancer. BCP50-2-AuNRs were rod-shaped with a long diameter of 26.8 nm and had good photothermal conversion effects. Under near-infrared (NIR) light irradiation, BCP50-2-AuNRs possessed photothermal effects and suppressed the growth of HepG2, A549, and MCF-7 cells. In addition, BCP50-2-AuNRs inhibited the development of liver cancer by inducing cell apoptosis, arresting the cell cycle in G2/M phases, and inhibiting cell migration. Moreover, BCP50-2-AuNRs inhibited tumor proliferation, migration, and angiogenesis in zebrafish. In summary, BCP50-2-AuNRs may be potentially useful for cancer treatment.


Assuntos
Neoplasias Hepáticas , Nanotubos , Animais , Terapia Fototérmica , Fototerapia , Ouro/química , Peixe-Zebra , Nanotubos/química , Neoplasias Hepáticas/terapia , Polissacarídeos/farmacologia , Linhagem Celular Tumoral
17.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067413

RESUMO

Cancer is one of the deadliest human diseases, causing high rates of illness and death. Lung cancer has the highest mortality rate among all malignancies worldwide. Effusanin B, a diterpenoid derived from Isodon serra, showed therapeutic potential in treating non-small-cell lung cancer (NSCLC). Further research on the mechanism indicated that effusanin B inhibited the proliferation and migration of A549 cells both in vivo and in vitro. The in vitro activity assay demonstrated that effusanin B exhibited significant anticancer activity. Effusanin B induced apoptosis, promoted cell cycle arrest, increased the production of reactive oxygen species (ROS), and altered the mitochondrial membrane potential (MMP). Based on mechanistic studies, effusanin B was found to inhibit the proliferation and migration of A549 cells by affecting the signal transducer and activator of transcription 3 (STAT3) and focal adhesion kinase (FAK) pathways. Moreover, effusanin B inhibited tumor growth and spread in a zebrafish xenograft model and demonstrated anti-angiogenic effects in a transgenic zebrafish model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Peixe-Zebra/metabolismo , Transdução de Sinais , Angiogênese , Proliferação de Células , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo
18.
Molecules ; 28(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894550

RESUMO

Aimed at discovering small molecules as anticancer drugs or lead compounds from plants, a lindenane-type sesquiterpene dimer, chlorahololide D, was isolated from Chloranthus holostegius. The literature review showed that there were few reports on the antitumor effects and mechanisms of chlorahololide D. Our biological assay suggested that chlorahololide D blocked the growth and triggered apoptosis of MCF-7 cells by stimulating the reactive oxygen species (ROS) levels and arresting the cell cycle at the G2 stage. Further mechanism exploration suggested that chlorahololide D regulated apoptosis-related proteins Bcl-2 and Bax. Moreover, chlorahololide D inhibited cell migration by regulating the FAK signaling pathway. In the zebrafish xenograft model, chlorahololide D was observed to suppress tumor proliferation and migration significantly. Considering the crucial function of angiogenesis in tumor development, the anti-angiogenesis of chlorahololide D was also investigated. All of the research preliminarily revealed that chlorahololide D could become an anti-breast cancer drug.


Assuntos
Neoplasias da Mama , Magnoliopsida , Sesquiterpenos , Animais , Humanos , Feminino , Estrutura Molecular , Neoplasias da Mama/tratamento farmacológico , Peixe-Zebra/metabolismo , Magnoliopsida/metabolismo , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Células MCF-7
19.
Int J Biol Macromol ; 246: 125555, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364807

RESUMO

Polysaccharides, an important class of carbohydrate polymers, are considered as one of the sources of drug molecules. To discover bioactive polysaccharides as potential agents against cancer, a homogeneous polysaccharide (IJP70-1) has been purified from the flowers of Inula japonica, which is a traditional medicinal plant used for various medical indications. IJP70-1 with a molecular weight of 1.019 × 105 Da was mainly composed of →5)-α-l-Araf-(1→, →2,5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→, →2,3,5)-α-l-Araf-(1→, →6)-α-d-Glcp-(1→, →3,6)-α-d-Galp-(1→, and t-α-l-Araf. Apart from the characteristics and structure elucidated by various techniques, the in vivo antitumor activity of IJP70-1 was assayed using zebrafish models. In the subsequent mechanism investigation, it was found that the in vivo antitumor activity of IJP70-1 was not cytotoxic mechanism caused, but related to the activation of the immune system and inhibition of angiogenesis by interacting with the proteins toll-like receptor-4 (TLR-4), programmed death receptor-1 (PD-1), and vascular endothelial growth factor (VEGF). The chemical and biological studies have shown that the homogeneous polysaccharide IJP70-1 has the potential to be developed into an anticancer agent.


Assuntos
Antineoplásicos , Inula , Animais , Fator A de Crescimento do Endotélio Vascular , Receptor de Morte Celular Programada 1 , Receptor 4 Toll-Like , Peixe-Zebra , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Fatores de Crescimento do Endotélio Vascular , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química
20.
Int J Biol Macromol ; 242(Pt 2): 124635, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121414

RESUMO

Genistein is an isoflavone with chemopreventive and therapeutic effects on various types of cancers. Apparently, in contrast to the advantages of multi-target therapy, the poor water solubility of this molecule is a major obstacle to its clinical application. In this work, zein/chicory polysaccharide nanoparticles (G-zein-P NPs) were prepared by pH-induced antisolvent precipitation method for the encapsulation of genistein. Firstly, an acidic polysaccharide (CIP70-2) with a molecular weight of 66.7 kDa was identified from the roots of chicory (Cichorium intybus). This natural macromolecule was identified as a plant pectin, for which the structure included RG-I (rhamnogalacturonan I) and HG (homogalacturonan) regions. Using this polysaccharide, G-zein-P NPs were prepared, in which the water solubility of genistein was improved by encapsulation. The encapsulation efficiency and loading efficiency of genistein by composite nanoparticles reached 99.0 % and 6.96 %, respectively. In vitro tumor inhibition experiments showed that the inhibitory effect of G-zein-P NPs on HepG2 cells was twice that of unencapsulated genistein. Moreover, the significant inhibition of tumor development and metastasis by G-zein-P NPs was observed in zebrafish xenograft models. The results suggested that zein/chicory polysaccharide nanoparticles may be a promising delivery carrier for genistein application in cancer prevention and therapy.


Assuntos
Cichorium intybus , Nanopartículas , Neoplasias , Zeína , Animais , Humanos , Genisteína/farmacologia , Cichorium intybus/química , Zeína/química , Peixe-Zebra , Polissacarídeos/farmacologia , Água , Nanopartículas/química , Tamanho da Partícula , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA