Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133761, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38987001

RESUMO

This study aimed to enhance the antioxidant activity of carboxymethyl inulin (CMI) by chemical modification. Therefore, a series of cationic Schiff bases bearing heteroatoms were synthesized and incorporated into CMI via ion exchange reactions, ultimately preparing 10 novel CMI derivatives (CMID). Their structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The radical scavenging activities and reducing power of inulin, CMI, and CMID were studied. The results revealed a significant enhancement in antioxidant activity upon the introduction of cationic Schiff bases into CMI. Compared to commercially available antioxidant Vc, CMID demonstrated a broader range of antioxidant activities across the four antioxidant systems analyzed in this research. In particular, CMID containing quinoline (6QSCMI) exhibited the strongest hydroxyl radical scavenging activity, with a scavenging rate of 93.60 % at 1.6 mg mL-1. The CMID bearing imidazole (2MSCMI) was able to scavenge 100 % of the DPPH radical at 1.60 mg mL-1. Furthermore, cytotoxicity experiments showed that the products had good biocompatibility. These results are helpful for evaluating the feasibility of exploiting these products in the food, biomedical, and cosmetics industries.

2.
Int J Biol Macromol ; 268(Pt 2): 131736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653433

RESUMO

A novel cationic lipoic acid grafted low molecular weight chitosan (LCNE-LA) conjugate was constructed and further self-assembled into GSH-responsive cationic nanocarrier to achieve better antitumor effect by combining encapsulated chemotherapy and oxidative damage induced by ROS. The resultant LCNE-LA cationic micelle exhibited favorable physicochemical properties (low CMC, small size, positively zeta potential and good stability), excellent biosafety and desired redox sensitivity. Next, doxorubicin (Dox) was embedded into hydrophobic core to form stable Dox/LCNE-LA micelle that had superior loading capacity. The GSH-induced release behavior, cellular uptake ability, ROS generation and GSH consumption capacity and in vitro antitumor activity of Dox/LCNE-LA micelle were systematically evaluated. Consequently, Dox/LCNE-LA cationic micelle with positively charged could efficiently enter into cancer cell and redox-sensitive release Dox via disulfide-thiol exchange reaction, which usually expend abundant GSH and disrupt redox homeostasis. Studies further confirmed that Dox/LCNE-LA micelle could increase ROS and reduced GSH content which might cause oxidative damage to tumor cell. Antitumor activity indicated that Dox/LCNE-LA micelle achieved an excellent cancer-killing effect, which might be attributed to combination treatment of Dox and ROS induce oxidative damage. Overall, this research was expected to provide a platform for antitumor treatment by triggering Dox release and promoting ROS generation.


Assuntos
Antineoplásicos , Quitosana , Doxorrubicina , Glutationa , Micelas , Peso Molecular , Estresse Oxidativo , Quitosana/química , Quitosana/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Glutationa/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Cátions/química , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
3.
Mar Drugs ; 22(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248665

RESUMO

The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier.


Assuntos
Quitosana , Neoplasias Pulmonares , Polietilenoglicóis , Polietilenoimina , Polifosfatos , Humanos , Animais , Camundongos , Nanogéis , Antioxidantes/farmacologia , Cloreto de Amônio , Benzimidazóis , Doxorrubicina/farmacologia , Compostos de Amônio Quaternário/farmacologia
4.
Int J Biol Macromol ; 257(Pt 1): 128590, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056756

RESUMO

pH-responsive nanogels have played an increasingly momentous role in tumor treatment. The focus of this study is to design and develop pH-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for the controlled release of doxorubicin hydrochloride (DOX) while enhancing its hydrophilicity. BIMIXHAC is crosslinked with carboxymethyl chitosan (CMC), hyaluronic acid sodium salt (HA), and sodium alginates (SA) using an ion crosslinking method. The chemical structure of chitosan derivatives was verified by 1H NMR and FT-IR techniques. Compared to hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-based nanogels, BIMIXHAC-based nanogels exhibit better drug encapsulation efficiency and loading capacity (BIMIXHAC-D-HA 91.76 %, and 32.23 %), with pH-responsive release profiles and accelerated release in vitro. The series of nanogels formed by crosslinking with three different polyanionic crosslinkers have different particle size potentials and antioxidant properties. BIMIXHAC-HA, BIMIXHAC-SA and BIMIXHAC-CMC demonstrate favorable antioxidant capability. In addition, cytotoxicity tests showed that BIMIXHAC-based nanogels have high biocompatibility. BIMIXHAC-based nanogels exhibit preferable anticancer effects on MCF-7 and A549 cells. Furthermore, the BIMIXHAC-D-HA nanogel was 2.62 times less toxic than DOX to L929 cells. These results suggest that BIMIXHAC-based nanogels can serve as pH-responsive nanoplatforms for the delivery of anticancer drugs.


Assuntos
Antioxidantes , Quitosana , Nanogéis , Antioxidantes/farmacologia , Quitosana/química , Liberação Controlada de Fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Doxorrubicina/farmacologia , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Sódio , Portadores de Fármacos/química
5.
Mar Drugs ; 21(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132927

RESUMO

A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 µg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.


Assuntos
Quitosana , Quinolinas , Antioxidantes/farmacologia , Antioxidantes/química , Superóxidos/química , Quitosana/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Quinolinas/farmacologia
6.
Mar Drugs ; 21(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888470

RESUMO

As a promising biological material, chitooligosaccharide (COS) has attracted increasing attention because of its unique biological activities. In this study, fourteen novel phenolic acid functional COS derivatives were successfully prepared using two facile methods. The structures of derivatives were characterized by FT-IR and 1H NMR spectra. The in vitro antioxidant activity experiment results demonstrated that the derivatives presented stronger 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), superoxide, hydroxyl radical scavenging activity and reducing power, especially the N,N,N-trimethylated chitooligosaccharide gallic acid salt (GLTMC), gallic acid esterified N,N,N-trimethylated chitooligosaccharide (GL-TMC) and caffeic acid N,N,N-trimethylated chitooligosaccharide (CFTMC) derivatives. Furthermore, the antifungal assay was carried out and the results indicated that the salicylic acid esterified N,N,N-trimethylated chitooligosaccharide (SY-TMC) had much better inhibitory activity against Botrytis cinerea and Fusarium graminearum. Additionally, the results of the bacteriostasis experiment showed that the caffeic acid esterified N,N,N-trimethylated chitooligosaccharide (CF-TMC) had the potential ability to inhibit Escherichia coli and Staphylococcus aureus bacteria. Altogether, this study may provide a neoteric method to produce COS derivatives with significantly increased biological activities, which have potential use in food, medicine, and health care products and other related industries.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/farmacologia , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Quitosana/química , Quitina/farmacologia , Ácido Gálico , Antibacterianos/farmacologia , Antibacterianos/química
7.
Int J Biol Macromol ; 247: 125849, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37460070

RESUMO

Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'­carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior. Doxorubicin (Dox) loaded micelles were prepared by encapsulating Dox into blank micelles. The loading ability, trigger-release behavior, antitumor activity and cellular uptake of Dox loaded micelles were studied. The results demonstrated that Dox loaded micelles with superior loading ability exhibited redox-trigger behavior, strong antitumor activity and increased cellular uptake efficiency against A549 cell. Besides, the effect of DS of LA on above properties was estimated. An increase in DS of LA reduced the CMC and cumulative release amount of Dox, but improved the loading efficiency, antitumor activity, and cellular uptake of Dox loaded micelles, which resulted from stronger interaction of hydrophobic groups in micelles with the DS of LA increased. Overall, self-assembled LC-LA micelles with good biosecurity and redox-sensitive behavior hold promising application prospects in Dox delivery and improving cancer therapeutic effect of Dox.


Assuntos
Quitosana , Ácido Tióctico , Micelas , Quitosana/química , Ácido Tióctico/química , Portadores de Fármacos/química , Peso Molecular , Doxorrubicina/farmacologia , Doxorrubicina/química , Oxirredução , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio
8.
Carbohydr Polym ; 315: 120978, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230617

RESUMO

Herein, imidazole acids grafted chitosan derivatives were synthesized, including HACC, HACC derivatives, TMC, TMC derivatives, amidated chitosan and amidated chitosan bearing imidazolium salts. The prepared chitosan derivatives were characterized by FT-IR and 1H NMR. The tests evaluated the biological antioxidant, antibacterial, and cytotoxic activities of chitosan derivatives. The antioxidant capacity (DPPH radical, superoxide anion radical and hydroxyl radical) of chitosan derivatives was 2.4-8.3 times higher than that of chitosan. The antibacterial capacity against E. coli and S. aureus of cationic derivatives (HACC derivatives, TMC derivatives, and amidated chitosan bearing imidazolium salts) was more active than only imidazole-chitosan (amidated chitosan). In particular, the inhibition effect of HACC derivatives on E. coli was 15.625 µg/mL. Moreover, the series of chitosan derivatives bearing imidazole acids showed certain activity against MCF-7 and A549 cells. The present results suggest that the chitosan derivatives in this paper seem to be promising carrier materials for use in drug delivery systems.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/farmacologia , Antioxidantes/química , Quitosana/química , Staphylococcus aureus , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Sais , Superóxidos , Imidazóis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
9.
Mar Drugs ; 22(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38248643

RESUMO

Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.


Assuntos
Quitosana , Micelas , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Oxirredução
10.
Carbohydr Res ; 521: 108678, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116378

RESUMO

In the present study, four new chitosan oligosaccharide derivatives bearing quinolinyl urea groups were synthesized by reaction between 2-methoxyformylated chitosan oligosaccharide and aminoquinoline. The chitosan oligosaccharide derivatives were characterized by Fourier Transform Infrared (FTIR) and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The obtained results confirmed that chitosan oligosaccharide quinolinyl urea derivatives were successfully synthesized. Meanwhile, the antioxidant activities of different chitosan oligosaccharide derivatives were examined in vitro. Experimentally, it was demonstrated that chitosan oligosaccharide quinolinyl urea derivatives had superior antioxidant activity compared with chitosan oligosaccharide and the antioxidant effects were concentration-dependent. Especially, when the concentration was 1.6 mg/mL, their superoxide anion radical scavenging rates could reach to 72.35 ± 0.49%, 100.00 ± 0.21%, 84.63 ± 0.49%, and 87.22 ± 0.32%, respectively. And the hydroxyl radical scavenging rates could reach to 100.00 ± 0.82%, 98.49 ± 4.08%, 100.00 ± 5.76%, and 92.07 ± 5.10%. In addition, the cytotoxic activity of the prepared chitosan derivatives against L929 cells was determined by CCK-8 assay. The cell survival rates were all higher than 90%, which intuitively indicated that the samples had almost no cytotoxicity. The findings indicated that the enhanced antioxidant property and biocompatibility of these chitosan oligosaccharide quinolinyl urea derivatives could enlarge the scope of the application of chitosan oligosaccharide, particularly as an antioxidant in food packaging, biomedical, pharmaceutical, cosmetics industries and other fields.


Assuntos
Antioxidantes , Quitosana , Aminoquinolinas , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Radical Hidroxila , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos/química , Ureia/química
11.
Mar Drugs ; 20(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36005492

RESUMO

A series of phenolic acid chitooligosaccharide (COS) derivatives synthesized by two mild and green methods were illuminated in this paper. Seven phenolic acids were selected to combine two kinds of COS derivatives: the phenolic acid chitooligosaccharide salt derivatives and the phenolic-acid-acylated chitooligosaccharide derivatives. The structures of the derivatives were characterized by FT-IR and 1H NMR spectra. The antioxidant experiment results in vitro (including DPPH-radical scavenging activity, superoxide-radical scavenging activity, hydroxyl-radical scavenging ability, and reducing power) demonstrated that the derivatives exhibited significantly enhanced antioxidant activity compared to COS. Moreover, the study showed that the phenolic acid chitooligosaccharide salts had stronger antioxidant activity than phenolic-acid-acylated chitooligosaccharide. The cytotoxicity assay of L929 cells in vitro indicated that the derivatives had low cytotoxicity and good biocompatibility. In conclusion, this study provides a possible synthetic method for developing novel and nontoxic antioxidant agents which can be used in the food and cosmetics industry.


Assuntos
Antioxidantes , Hidroxibenzoatos , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Oligossacarídeos , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Int J Biol Macromol ; 217: 969-978, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907462

RESUMO

Amino functionalized chitosan has attracted much attention because of the fascinated bioactivities. In our study, a novel water-soluble amino functionalized chitosan bearing free amino group at C-2 and quaternary ammonium moiety contained free amino group at C-6 (5c) was prepared by a four-step method. The structural characterization was identified by FTIR and 1H NMR spectroscopy. The water-solubility and antioxidant activities against hydroxyl, DPPH radicals and reducing power were estimated. The results displayed that amino functionalized chitosan 5c exhibited improved water-solubility and antioxidant ability, especially its DPPH scavenging rate reached about 90 % at the minimum test concentration of 0.10 mg/mL. Besides, antibacterial tests showed that amino functional chitosan 5c had best antibacterial activities, which indicated that amino group made main contribution to the enhanced bioactivities. In short, the novel chitosan 5c possessed enhanced water-solubility and excellent antioxidant and antibacterial activities, which could provide novel strategy for the development of antioxidant and antibacterial agents in biomedicine and food fields.


Assuntos
Quitosana , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Solubilidade , Água
13.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566038

RESUMO

Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is one of the most important water-soluble chitosan derivatives; its derivatives have gained growing attention due to their potential biomedical applications. Here, hydroxypropyltrimethyl ammonium chitosan derivatives bearing thioctate (HACTs), with different degrees of substitution of thioctate, were prepared using HACC and α-lipoic acid as the reaction precursors, using an ion exchange method. The structural characteristics of the synthesized derivatives were confirmed by FTIR, 1H NMR, and 13C NMR spectroscopy. In addition, their antioxidant behaviors were also investigated in vitro by the assays of reducing power, and scavenging activities against hydroxyl radicals and DPPH radicals. The antioxidant assay indicated that HACTs displayed strong antioxidant activity compared with HACC, especially in terms of reducing power. Besides, the antioxidant activities of the prepared products were further enhanced with the increase in the test concentration and the degrees of substitution of thioctate. At the maximum test concentration of 1.60 mg/mL, the absorbance value at 700 nm of HACTs, under the test conditions, was 4.346 ± 0.296, while the absorbance value of HACC was 0.041 ± 0.007. The aforementioned results support the use of HACTs as antioxidant biomaterials in food and the biomedical field.


Assuntos
Compostos de Amônio , Quitosana , Ácido Tióctico , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Compostos de Amônio Quaternário/química
14.
Mar Drugs ; 20(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35621929

RESUMO

In this study, chitosan nanoparticles (HF-CD NPs) were synthesized by an ionic gelation method using negatively charged carboxymethyl-ß-cyclodextrin and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan bearing folic acid. The surface morphology of HF-CD NPs was spherical or oval, and they possessed relatively small particle size (192 ± 8 nm) and positive zeta potential (+20 ± 2 mV). Meanwhile, doxorubicin (Dox) was selected as model drug to investigate the prepared nanoparticles' potential to serve as a drug delivery carrier. The drug loading efficiency of drug-loaded nanoparticles (HF-Dox-CD NPs) was 31.25%. In vitro release profiles showed that Dox release of nanoparticles represented a pH-sensitive sustained and controlled release characteristic. At the same time, the antioxidant activity of nanoparticles was measured, and chitosan nanoparticles possessed good antioxidant activity and could inhibit the lipid peroxidation inside the cell and avoid material infection. Notably, CCK-8 assay testified that the nanoparticles were safe drug carriers and significantly enhanced the antitumor activity of Dox. The nanoparticles possessed good antioxidant activity, pH-sensitive sustained controlled release, enhanced antitumor activity, and could be expected to serve as a drug carrier in future with broad application prospects.


Assuntos
Quitosana , Nanopartículas , Antioxidantes/farmacologia , Preparações de Ação Retardada , Doxorrubicina/farmacologia , Portadores de Fármacos , Concentração de Íons de Hidrogênio , beta-Ciclodextrinas
15.
Mol Plant ; 15(5): 872-886, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35272047

RESUMO

Cytoplasmic male sterility (CMS) is a powerful tool for the exploitation of hybrid heterosis and the study of signaling and interactions between the nucleus and the cytoplasm. C-type CMS (CMS-C) in maize has long been used in hybrid seed production, but the underlying sterility factor and its mechanism of action remain unclear. In this study, we demonstrate that the mitochondrial gene atp6c confers male sterility in CMS-C maize. The ATP6C protein shows stronger interactions with ATP8 and ATP9 than ATP6 during the assembly of F1Fo-ATP synthase (F-type ATP synthase, ATPase), thereby reducing the quantity and activity of assembled F1Fo-ATP synthase. By contrast, the quantity and activity of the F1' component are increased in CMS-C lines. Reduced F1Fo-ATP synthase activity causes accumulation of excess protons in the inner membrane space of the mitochondria, triggering a burst of reactive oxygen species (ROS), premature programmed cell death of the tapetal cells, and pollen abortion. Collectively, our study identifies a chimeric mitochondrial gene (ATP6C) that causes CMS in maize and documents the contribution of ATP6C to F1Fo-ATP synthase assembly, thereby providing novel insights into the molecular mechanisms of male sterility in plants.


Assuntos
Infertilidade Masculina , ATPases Mitocondriais Próton-Translocadoras , Trifosfato de Adenosina/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Humanos , Infertilidade Masculina/metabolismo , Masculino , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Infertilidade das Plantas/genética , Zea mays/genética , Zea mays/metabolismo
16.
Int J Biol Macromol ; 199: 138-149, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34973272

RESUMO

A series of novel carboxymethyl inulin derivatives bearing thiosemicarbazide salts, aminoguanidine salts, and aniline salts were prepared via a facile method and employed to evaluate in vitro antioxidant activity and antibacterial activity. Their structures were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The characterization results confirmed the successful synthesis of carboxymethyl inulin salt derivatives. The in vitro antioxidant activity evaluation results presented a significant improved superoxide radical scavenging ability, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, and reducing ability of carboxymethyl inulin salt derivatives as compared to inulin and carboxymethyl inulin. In particular, the series of carboxymethyl inulin derivatives containing thiosemicarbazide salts and aminoguanidine salts showed remarkable free radical scavenging ability and reducing ability. Moreover, the carboxymethyl inulin derivatives containing thiosemicarbazide salts and aniline salts displayed potential antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. The cytotoxicity assay was also carried out on L929 cells by CCK-8 method, and all samples showed weak cytotoxicity. Furthermore, hemolysis results showed no hemolytic activity of most prepared inulin derivatives. In summary, the inulin derivatives containing thiosemicarbazide salts exhibited outstanding antioxidant activity, antibacterial activity, and biocompatibility, and the all-inclusive properties highlighted their potential use in food and medical applications.


Assuntos
Antioxidantes , Inulina , Antibacterianos/química , Antioxidantes/química , Sequestradores de Radicais Livres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos/química
17.
Carbohydr Polym ; 273: 118623, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561017

RESUMO

In this paper, adriamycin-incorporated chitosan nanoparticles were synthesized by ionic gelation using negatively charged carboxymethyl chitosan and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan. The method was efficient to obtain nanoparticles with low polydispersity index and small hydrodynamic diameter. And high zeta potential value indicated that nanoparticles had good stability. The adriamycin release of nanoparticles represented a significant response to pH, with the fastest release in phosphate buffer solution at pH 6.8. Meanwhile, the antioxidant efficiency of nanoparticles was assayed, and nanoparticles represented significant enhancement in radicals scavenging activity. The assay of cell viability by CCK-8 test exhibited that nanoparticles led to statistically significant decrease in cell viability for four kinds of cancer cells (HEPG-2, A549, MCF-7, and BGC-823). It was indicated that the nanoparticles with enhanced biological activity, reduced cytotoxicity, and pH-sensitive release could be served as potential drug carrier in drug delivery system.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Antineoplásicos/química , Antioxidantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio
18.
Polymers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300987

RESUMO

Chitosan nanoparticles have been considered as potential candidates for drug loading/release in drug delivery systems. In this paper, nanoparticles (HACAFNP) loading adriamycin based on 2-hydroxypropyltrimethyl ammonium chloride chitosan grafting folic acid (HACF) were synthesized. The surface morphology of the novel nanoparticles was spherical or oval, and the nanoparticles exhibited a relatively small hydrodynamic diameter (85.6 ± 2.04 nm) and positive zeta potential (+21.06 ± 0.96 mV). The drug release of nanoparticles was assayed and represented a burst effect followed by a long-term steady release. Afterward, the antioxidant efficiencies of nanoparticles were assayed. In particular, the target nanoparticles exhibited significant enhancement in radical scavenging activities. Cytotoxicities against cancer cells (MCF-7, BGC-823, and HEPG-2) were estimated in vitro, and results showed nanoparticles inhibited the growth of cancer cells. It's worth noting that the inhibition index of HACAFNP against BGC-823 cells was 71.19% with the sample concentration of 25 µg/mL, which was much higher than the inhibitory effect of ADM. It was demonstrated that the novel nanoparticles with dramatically enhanced biological activity, reduced cytotoxicity, and steady release could be used as the practical candidates for drug loading/release in a delivery system.

19.
Carbohydr Res ; 498: 108169, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059099

RESUMO

A class of phenolic-chitosan quaternary ammonium derivatives have been designed and synthesized. Three chitosan derivatives possess effective structure of hydroxycinnamic acid have been obtained through chemical modification to get chitosan derivatives owning high antioxidant activity and antitumor activity. In this study, the scavenging ability of DPPH, hydroxyl (•OH), and superoxide (O2•-) free radical and reducing power have been tested to evaluate the antioxidant activity of the synthesized chitosan derivatives. Base on the value of IC50, the chitosan derivatives have the best inhibitory property of 0.019 mg/mL (DPPH), 0.016 mg/mL (•OH), and 0.008 (O2•-), respectively; and the chitosan derivatives with conjugate structure of ferulic acid and sinapic acid (4b and 4c) show promising antitumor activity toward A549 cells with the IC50 of 0.046 and 0.052 mg/mL. These data indicate that the chitosan derivatives with phenolic group give much stronger antioxidant activity and antitumor activity. On the other hand, the synthesized chitosan derivatives show no cytotoxicity for L929 cells at the testing concentrations. These results demonstrate that the introduction of phenol group improves the antioxidant activity of chitosan obviously, and the antioxidant or free radical scavenger based on nature polymers and phenol shows potentials application.


Assuntos
Quitosana/química , Quitosana/farmacologia , Hidroxibenzoatos/química , Compostos de Amônio Quaternário/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos
20.
Polymers (Basel) ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114217

RESUMO

A novel and green method for the preparation of chitosan derivatives bearing organic acids was reported in this paper. In order to improve the antioxidant activity of chitosan, eight different hydroxypropyltrimethyl ammonium chitosan derivatives were successfully designed and synthesized via introducing of organic acids onto chitosan by mild and non-toxic ion exchange. The data of Fourier Transform Infrared (FTIR), 13C Nuclear Magnetic Resonance (NMR), 1H NMR, and elemental analysis for chitosan derivatives indicated the successful conjugation of organic acid salt with hydroxypropyltrimethyl ammonium chloride chitosan (HACC). Meanwhile, the antioxidant activity of the chitosan derivatives was evaluated in vitro. The results indicated that the chitosan derivatives possessed dramatic enhancements in DPPH-radical scavenging activity, superoxide-radical scavenging activity, hydroxyl radical scavenging ability, and reducing power. Furthermore, the cytotoxicity of the synthesized compounds was investigated in vitro on L929 cells and showed low cytotoxicity. Thus, the enhanced antioxidant property of all novel chitosan products might be a great advantage, while applied in a wide range of applications in the form of antioxidant in biomedical, food, and cosmetic industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA