Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Nutr Rep ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302593

RESUMO

PURPOSE OF THE REVIEW: Diabetes and obesity are complicated multifactorial conditions that have been highlighted as a significant global burden for both health care and national budgets and their complications are considered a substantial public health concern. This review focuses on the potential anti-diabetic and anti-obesity properties of bee pollen (BP) and bee bread (BB), two bee products with a long history of use in traditional medicine and supplemental nutrition. RECENT FINDINGS: Recent studies, encompassing cellular models, experimental models, and clinical trials, have shed light on the therapeutic potential of these bee products. BP and BB are rich in phytochemical constituents like flavonoids and phenolic acids, which are believed to confer their anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity properties. These bee products have shown promising results in the treatment of diabetes and obesity, underscoring their potential as natural therapeutic tools. BP and BB possess properties that aid in decreasing blood glucose levels and body weight. BP and BB have been found to enhance insulin sensitivity, alleviate oxidative stress, regulate appetite, adjust levels of hormones linked to obesity, while bolstering anti-oxidant defense systems. BP and BB nutritional qualities and health benefits make them promising candidates for further research towards diabetes and obesity treatment strategies.

2.
Bioengineering (Basel) ; 11(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199787

RESUMO

Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.

3.
Int J Biol Macromol ; 274(Pt 1): 133249, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906361

RESUMO

Nanocomposites are sophisticated materials that incorporate nanostructures into matrix materials, such as polymers, ceramics and metals. Generally, the marine ecosystem exhibits severe variability in terms of light, temperature, pressure, and nutrient status, forcing the marine organisms to develop variable, complex and unique chemical structures to boost their competitiveness and chances of survival. Polymers sourced from marine creatures, such as chitin, chitosan, alginate, sugars, proteins, and collagen play a crucial role in the bioengineering field, contributing significantly to the development of nanostructures like nanoparticles, nanocomposites, nanotubes, quantum dots, etc. These nanostructures offer a wide array of features involving mechanical strength, thermal stability, electrical conductivity, barrier and optical characteristics compared to traditional composites. Notably, marine nanocomposites have distinctive roles in a wide spectrum of applications, among them anti-cancer, anti-microbial, antioxidant, cytotoxic, food packing, tissue engineering and catalytic actions. Sol-gel, hot pressing, chemical vapor deposition, catalytic decomposition, dispersion, melt intercalation, in situ intercalative polymerization, high-energy ball milling and template synthesis are common processes utilized in engineering nanocomposites. According to our literature survey and the Web of Science, chitosan, followed by cellulose, chitin and MAPs emerge as the most significant marine polymers utilized in the construction of nanocomposites. Taken together, the current manuscript underscores the biogenesis of nanocomposites, employing marine polymers using eco-friendly processes. Furthermore, significant emphasis in this area is needed to fully explore their capabilities and potential benefits. To the best of our knowledge, this manuscript stands as the first comprehensive review that discusses the role of marine-derived polymers in engineering nanocomposites for various applications.


Assuntos
Organismos Aquáticos , Colágeno , Nanocompostos , Polissacarídeos , Nanocompostos/química , Polissacarídeos/química , Colágeno/química , Organismos Aquáticos/química , Química Verde , Engenharia Tecidual/métodos , Animais , Quitosana/química
4.
Nutrients ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337678

RESUMO

Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Experimental , Gastroenteropatias , Doenças Metabólicas , Ratos , Animais , Abelhas , Diabetes Mellitus Experimental/tratamento farmacológico , Ácidos Graxos/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Sci Total Environ ; 907: 167925, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37863215

RESUMO

Subtropical ecosystems are strongly affected by nitrogen (N) deposition, impacting soil organic matter (SOM) availability and stocks. Here we aimed to reveal the effects of N deposition on i) the structure and functioning of microbial communities and ii) the temperature sensitivity (Q10) of SOM decomposition. Phosphorus (P) limited evergreen forest in Guangdong Province, southeastern China, was selected, and N deposition (factor level: N (100 kg N ha-1 y-1 (NH4NO3)) and control (water), arranged into randomized complete block design (n = 3)) was performed during 2.5 y. After that soils from 0 to 20 cm were collected, analyzed for the set of parameters and incubated at 15, and 25, and 35 °C for 112 days. N deposition increased the microbial biomass N and the content of fungal and Gram-positive bacterial biomarkers; activities of beta-glucosidase (BG) and acid phosphatase (ACP) also increased showing the intensification of SOM decomposition. The Q10 of SOM decomposition under N deposition was 1.66 and increased by 1.4 times than under control. Xylosidase (BX), BG, and ACP activities increased with temperature under N but decreased with the incubation duration, indicating either low production and/or decomposition of enzymes. Activities of polyphenol-(PPO) and peroxidases (POD) were higher under N than in the control soil and were constant during the incubation showing the intensification of recalcitrant SOM decomposition. At the early incubation stage (10 days), the increase of Q10 of CO2 efflux was explained by the activities of BX, BQ, ACP, and POD and the quality of the available dissolved organic matter pool. At the later incubation stages (112 days), the drop of Q10 of CO2 efflux was due to the depletion of the labile organic substances and the shift of microbial community structure to K-strategists. Thus, N deposition decoupled the effects of extracellular enzyme activities from microbial community structure on Q10 of SOM decomposition in the subtropical forest soil.


Assuntos
Ecossistema , Solo , Carbono , Dióxido de Carbono , Florestas , Nitrogênio , Solo/química , Microbiologia do Solo , Temperatura
6.
Mar Drugs ; 21(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623720

RESUMO

Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant's yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation.


Assuntos
Mudança Climática , Cianobactérias , Animais , Dióxido de Carbono , Fixação de Nitrogênio , Agricultura
7.
Foods ; 12(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569237

RESUMO

In the process of storage and cold chain logistics, apples are prone to physical bumps or microbial infection, which easily leads to spoilage in the micro-environment, resulting in widespread infection and serious post-harvest economic losses. Thus, development of methods for monitoring apple spoilage and providing early warning of spoilage has become the focus for post-harvest loss reduction. Thus, in this study, a spoilage monitoring and early warning system was developed by measuring volatile component production during apple spoilage combined with chemometric analysis. An apple spoilage monitoring prototype was designed to include a gas monitoring array capable of measuring volatile organic compounds, such as CO2, O2 and C2H4, integrated with the temperature and humidity sensor. The sensor information from a simulated apple warehouse was obtained by the prototype, and a multi-factor fusion early warning model of apple spoilage was established based on various modeling methods. Simulated annealing-partial least squares (SA-PLS) was the optimal model with the correlation coefficient of prediction set (Rp) and root mean square error of prediction (RMSEP) of 0.936 and 0.828, respectively. The real-time evaluation of the spoilage was successfully obtained by loading an optimal monitoring and warning model into the microcontroller. An apple remote monitoring and early warning platform was built to visualize the apple warehouse's sensors data and spoilage level. The results demonstrated that the prototype based on characteristic gas sensor array could effectively monitor and warn apple spoilage.

8.
Biomed Pharmacother ; 158: 114104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36516694

RESUMO

Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.


Assuntos
Anti-Infecciosos , Arctium , Plantas Medicinais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Etnofarmacologia , Arctium/química , Nanomedicina , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico
9.
Plants (Basel) ; 11(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559548

RESUMO

The kingdom of Saudi Arabia (SA) ranks fifth in Asia in terms of area. It features broad biodiversity, including interesting flora, and was the historical origin of Islam. It is endowed with a large variety of plants, including many herbs, shrubs, and trees. Many of these plants have a long history of use in traditional medicine. The aim of this review is to evaluate the present knowledge on the plants growing in SA regarding their pharmacological and biological activities and the identification of their bioactive compounds to determine which plants could be of interest for further studies. A systematic summary of the plants' history, distribution, various pharmacological activities, bioactive compounds, and clinical trials are presented in this paper to facilitate future exploration of their therapeutic potential. The literature was obtained from several scientific search engines, including Sci-Finder, PubMed, Web of Science, Google Scholar, Scopus, MDPI, Wiley publications, and Springer Link. Plant names and their synonyms were validated by 'The Plant List' on 1 October 2021. SA is home to approximately 2247 plant species, including native and introduced plants that belong to 142 families and 837 genera. It shares the flora of three continents, with many unique features due to its extreme climate and geographical and geological conditions. As plants remain the leading supplier of new therapeutic agents to treat various ailments, Saudi Arabian plants may play a significant role in the fight against cancer, inflammation, and antibiotic-resistant bacteria. To date, 102 active compounds have been identified in plants from different sites in SA. Plants from the western and southwestern regions have been evaluated for various biological activities, including antioxidant, anti-cancer, antimicrobial, antimalarial, anti-inflammatory, anti-glycation, and cytotoxic activities. The aerial parts of the plants, especially the leaves, have yielded most of the bioactive compounds. Most bioactivity tests involve in vitro assessments for the inhibition of the growth of tumour cell lines, and several compounds with in vitro antitumour activity have been reported. More in-depth studies to evaluate the mode of action of the compounds are necessary to pave the way for clinical trials. Ecological and taxonomical studies are needed to evaluate the flora of SA, and a plan for the conservation of wild plants should be implemented, including the management of the protection of endemic plants.

10.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235123

RESUMO

Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: "cardiotonic steroids", "anti-inflammatory", "antiviral", "anticancer", "toad venom", "bufadienolides", and "poison chemical composition". Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.


Assuntos
Produtos Biológicos , Bufanolídeos , Glicosídeos Cardíacos , Venenos , Animais , Antivirais , Bufanolídeos/química , Bufonidae , Cardenolídeos/química , Glicosídeos Cardíacos/farmacologia , Hormônios , Humanos , Lactonas
11.
Nutrients ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235818

RESUMO

Cancer is one of the major causes of death globally. Currently, various methods are used to treat cancer, including radiotherapy, surgery, and chemotherapy, all of which have serious adverse effects. A healthy lifestyle, especially a nutritional diet, plays a critical role in the treatment and prevention of many disorders, including cancer. The above notion, plus the trend in going back to nature, encourages consumers and the food industry to invest more in food products and to find potential candidates that can maintain human health. One of these agents, and a very notable food agent, is royal jelly (RJ), known to be produced by the hypopharyngeal and mandibular salivary glands of young nurse honeybees. RJ contains bioactive substances, such as carbohydrates, protein, lipids, peptides, mineral salts and polyphenols which contribute to the appreciated biological and pharmacological activities. Antioxidant, anticancer, anti-inflammatory, antidiabetic, and antibacterial impacts are among the well-recognized benefits. The combination of RJ or its constituents with anticancer drugs has synergistic effects on cancer disorders, enhancing the drug's effectiveness or reducing its side effects. The purpose of the present review is to emphasize the possible interactions between chemotherapy and RJ, or its components, in treating cancer illnesses.


Assuntos
Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Abelhas , Carboidratos , Ácidos Graxos/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Minerais/uso terapêutico , Neoplasias/tratamento farmacológico , Sais
12.
Metabolites ; 12(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36144283

RESUMO

Anastatica hierochuntica L. (Cruciferae) has been known in Egyptian folk medicine as a remedy for gastrointestinal disorders, diabetes and heart diseases. Despite the wide usage, A. hierochuntica research provides insufficient data to support its traditional practice. The cytotoxicity of A. hierochuntica methanolic extract was investigated on acute myeloid leukemia blasts (AML) and normal human peripheral leucocytes (NHPL). The phytochemical identification of bioactive compounds using 1H-NMR and LC-ESI-MS was also performed. A. hierochuntica extract caused non-significant cytotoxicity on NHPL, while the cytotoxicity on AML was significant (IC50: 0.38 ± 0.02 µg/mL). The negative expression of p53, upregulation of Caspase-3 and increase in the BAX/BCL-2 ratio were reported at the protein and mRNA levels. The results suggest that A. hierochuntica extract induced AML cell death via the p53-independent mitochondrial intrinsic pathway and further attention should be paid to this plant as a promising natural anticancer agent.

13.
Nutrients ; 14(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889814

RESUMO

Bee pollen is a natural cocktail of floral nectar, flower pollen, enzymes, and salivary secretions produced by honeybees. Bee pollen is one of the bee products most enriched in proteins, polysaccharides, polyphenols, lipids, minerals, and vitamins. It has a significant health and medicinal impact and provides protection against many diseases, including diabetes, cancer, infectious, and cardiovascular. Bee pollen is commonly promoted as a cost-effective functional food. In particular, bee pollen has been applied in clinical trials for allergies and prostate illnesses, with a few investigations on cancer and skin problems. However, it is involved in several patents and health recipes to combat chronic health problems. This review aimed to highlight the clinical trials and patents involving bee pollen for different cases and to present the role of bee pollen as a supplementary food and a potential product in cosmetic applications.


Assuntos
Néctar de Plantas , Pólen , Animais , Abelhas , Masculino , Minerais/metabolismo , Néctar de Plantas/metabolismo , Pólen/química , Polifenóis/metabolismo , Vitaminas/análise
14.
Sci Rep ; 12(1): 9561, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689017

RESUMO

In this paper, graphene reinforced aluminum matrix composites are successfully prepared by high-energy ball milling. The results show that no graphene agglomeration is found in the mixed powder. The complex composites prepared by high energy ball milling and powder metallurgy have approximately 4-5 layers of graphene and the thickness of single-layer graphene is approximately 0.334 nm. The final experimental results confirm the formation of compound AlC3 in the microstructure, and its diffraction spot index is ([Formula: see text]00), ([Formula: see text]1[Formula: see text]) and (11[Formula: see text]). The maximum friction coefficient is 0.126, and the average friction coefficient is 0.027, suggesting good wear resistance and corrosion resistance. Additionally, the friction corrosion mechanism of the material is deeply analyzed. The results of strengthening mechanism analysis show that the main strengthening mechanism of the materials designed in this experiment is thermal mismatch strengthening. It can be concluded that the yield strength of the material calculated by the modified model is 227.75 MPa. This value is slightly lower than the calculated value of the general shear lag model (237.68 MPa). However, it is closer to the yield strength value of the actual material (211 MPa).

15.
Food Chem ; 394: 133481, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752123

RESUMO

Cadmium (Cd) causes pervasive harm on human health as a poisonous heavy metal. This study proposed a surface-enhanced Raman spectroscopy (SERS) approach using sodium alginate (SA) as green reductant in combination with edge enrichment and chemometrics to build label-free Cd quantitative models. The silver nanoparticles synthesized by SA had good dispersion and enhancement factor (3.48 × 105). The optimal detection system was established by optimizing the concentration of specific molecules (trimercaptotriazine) and the droplet volume of measured liquid. Partial least squares models based on preprocessing methods and selection algorithms were compared. The results indicated that the model combined with first-order derivative preprocessing and competitive adaptive reweighted sampling algorithms achieved the best performance (Rp = 0.9989, RMSEP = 1.6225) with the limit of detection of 2.36 × 10-5 µg L-1 in food. The SERS approach combined with edge enrichment and chemometrics holds promise for rapid and label-free determination of Cd in food.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Cádmio , Calibragem , Humanos , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos
16.
Int J Biol Macromol ; 193(Pt B): 1767-1798, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752793

RESUMO

Current innovations in the marine bionanotechnology arena are supporting and stimulating developments in other fields, including nanomedicine, pharmaceuticals, sensors, environmental trends, food, and agriculture aspects. Many oceanic creatures, particularly algae, plants, bacteria, yeast, fungi, cyanobacteria, actinomyces, invertebrates, animals and sponges can survive under extreme circumstances. They can biogenerate a broad spectrum of phytochemicals/metabolites, including proteins, peptides, alkaloids, flavonoids, polyphenols, carbohydrate polymers, polysaccharides, sulfated polysaccharides, polysaccharide-protein complexes such as carrageenan, fucoidanase, fucoidan, carboxymethyl cellulose, poly-γ-glutamic acid, sugar residues with proteins, melanin, haemocyanin, etc). These products exhibit exclusive advantages that offer pioneering roles in the eco-friendly fabrication of several nanoparticles (NPs) i.e., Ag, Au, Ru, Fe2O3, Cobalt (III) Oxide (Co2O3), ZnO and Ag@AgCl within a single phase. Importantly, marine organisms can biosynthesize NPs in two modes, namely extracellular and intracellular. Biosynthesized NPs can be characterized using various methodologies among them, ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Taken together, this review focuses on the green synthesis of metallic, metallic oxides and nonmetallic NPs utilizing extracts/derivatives from marine organisms based on eco-friendly green biogenic procedures. Moreover, significant attention is given to the medicinal and industrial importance of such marine organisms mediated NPs.


Assuntos
Organismos Aquáticos/química , Carragenina/química , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico
17.
Foods ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441553

RESUMO

Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.

18.
Nutrients ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072636

RESUMO

Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.


Assuntos
Abelhas , Alimento Funcional , Pólen , Própole , Animais , Antioxidantes/análise , Glicemia , Carboidratos/análise , Humanos , Síndrome Metabólica , Camundongos , Valor Nutritivo , Ratos
19.
Food Chem ; 353: 129372, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33725540

RESUMO

Matcha tea is rich in taste and bioactive constituents, quality evaluation of matcha tea is important to ensure flavor and efficacy. Near-infrared spectroscopy (NIR) in combination with variable selection algorithms was proposed as a fast and non-destructive method for the quality evaluation of matcha tea. Total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio (TP/FAA) were assessed as the taste quality indicators. Successive projections algorithm (SPA), genetic algorithm (GA), and simulated annealing (SA) were subsequently developed from the synergy interval partial least squares (SiPLS). The overall results revealed that SiPLS-SPA and SiPLS-SA models combined with NIR exhibited higher predictive capabilities for the effective determination of TP, FAA and TP/FAA with correlation coefficient in the prediction set (Rp) of Rp > 0.97, Rp > 0.98 and Rp > 0.98 respectively. Therefore, this simple and efficient technique could be practically exploited for tea quality control assessment.


Assuntos
Aminoácidos/análise , Polifenóis/análise , Pós/química , Paladar , Chá/química , Algoritmos , Antioxidantes/análise , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/métodos
20.
Anal Methods ; 13(13): 1625-1634, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33735352

RESUMO

Perchlorate is a new type of persistent pollutant, which interferes with the synthesis and secretion of thyroxine and affects human health. The EU's limit for perchlorate in tea is 750 µg kg-1. The surface-enhanced Raman scattering (SERS) technique has the characteristics of a simple pretreatment method, rapid detection, high sensitivity, high specificity and great stability in the detection of perchlorate. This study proposed a novel superhydrophobic SERS substrate, which can be used to detect perchlorate in tea. Firstly, a chemical deposition method was used to deposit a silver film on the surface of a thin layer of polydimethylsiloxane. After drying, the substrate was immersed in 1H,1H,2H,2H-perfluorodecyltriethoxysilane aqueous solution for 15 hours to make the surface of the substrate superhydrophobic. Then cysteine molecules were deposited on the surface of the silver film/polydimethylsiloxane by incubation. The superhydrophobic surface has a unique enrichment effect on the highly diluted solution, and perchlorate has a strong affinity for the amino group of cysteine. We collected the Raman spectra of 9 gradient concentrations (1-100 µmol L-1) of perchlorate-spiked tea samples on the hydrophobic substrate, and a linear model of the relationship between the SERS spectral intensity and the concentrations of perchlorate in tea was established. This method reached a good limit of detection of 0.0067 µmol L-1 (0.82 µg kg-1) in tea, which showed that the developed sensor has high sensitivity and could be used as a fast and simple technique for quantitative detection of perchlorate based on SERS technology.


Assuntos
Cisteína , Prata , Dimetilpolisiloxanos , Humanos , Percloratos , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA