Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2305208120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816049

RESUMO

Polyploidization is important to the evolution of plants. Subgenome dominance is a distinct phenomenon associated with most allopolyploids. A gene on the dominant subgenome tends to express to higher RNA levels in all organs as compared to the expression of its syntenic paralogue (homoeolog). The mechanism that underlies the formation of subgenome dominance remains unknown, but there is evidence for the involvement of transposon/DNA methylation density differences nearby the genes of parents as being causal. The subgenome with lower density of transposon and methylation near genes is positively associated with subgenome dominance. Here, we generated eight generations of allotetraploid progenies from the merging of parental genomes Brassica rapa and Brassica oleracea. We found that transposon/methylation density differ near genes between the parental (rapa:oleracea) existed in the wide hybrid, persisted in the neotetraploids (the synthetic Brassica napus), but these neotetraploids expressed no expected subgenome dominance. This absence of B. rapa vs. B. oleracea subgenome dominance is particularly significant because, while there is no negative relationship between transposon/methylation level and subgenome dominance in the neotetraploids, the more ancient parental subgenomes for all Brassica did show differences in transposon/methylation densities near genes and did express, in the same samples of cells, biased gene expression diagnostic of subgenome dominance. We conclude that subgenome differences in methylated transposon near genes are not sufficient to initiate the biased gene expressions defining subgenome dominance. Our result was unexpected, and we suggest a "nuclear chimera" model to explain our data.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Brassica rapa/genética , Brassica napus/genética , Metilação de DNA/genética , Poliploidia
2.
Int J Biol Macromol ; 253(Pt 5): 127192, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37793510

RESUMO

The inadequacy of conventional surgical techniques for wound closure and repair in soft and resilient tissues may lead to poor healing outcomes such as local tissue fibrosis and contracture. Therefore, the development of adhesive and resilient hydrogels that can adhere firmly to irregular and dynamic wound interfaces and provide a "tension-free proximity" environment for tissue regeneration has become extremely important. Herein, we describe an integrated modeling-experiment-application strategy for engineering a promising hydrogel-based bioadhesive based on recombinant human collagen (RHC) and catechol-modified hyaluronic acid (HA-Cat). Molecular modeling and simulations were used to verify and explore the hypothesis that RHC and HA-Cat can form an assembly complex through physical interactions. The complex was synergistically crosslinked via a catechol/o-quinone coupling reaction and a carbodiimide coupling reactions, resulting in superior hydrogels with strong adhesion and resilience properties. The application of this bioadhesive to tissue adhesion and wound sealing in vivo was successfully demonstrated, with an optimum collagen index, epidermal thickness, and lowest scar width. Furthermore, subcutaneous implantation demonstrated that the bioadhesive exhibited good biocompatibility and degradability. This newly developed hydrogel may be a highly promising surgical adhesive for medical applications, including wound closure and repair.


Assuntos
Adesivos , Hidrogéis , Humanos , Cicatrização , Colágeno , Ácido Hialurônico , Aderências Teciduais , Catecóis
3.
Biofabrication ; 15(3)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285837

RESUMO

Adhesive hydrogels possess great potential to be explored as tissue adhesives, surgical sealants, and hemostats. However, it has been a great challenge to develop hydrogels that can function rapidly and controllably on wet, dynamic biological tissues. Inspired by polyphenol chemistry, we introduce a coacervation-triggered shaping strategy that enables the hierarchical assembly of recombinant human collagen (RHC) and tannic acid (TA). The conformation of the RHC and TA aggregates is controlled to evolve from granular to web-like states, accompanied by the significant enhancement of mechanical and adhesion performance. The coacervation and assembly process is driven by intermolecular interactions, especially hydrogen bonding between RHC and TA. Benefitting from the multifaceted nature of polyphenol chemistry, the hierarchically assembled hydrogels revealed excellent properties as surgical sealing materials, including fast gelation time (within 10 s), clotting time (within 60 s), ultrastretchability (strain >10 000%), and tough adhesion (adhesive strength >250 kPa).In vivoexperiments demonstrated complete sealing of severely leaking heart and liver tissues with the assistance ofin situformed hydrogels during 7 d of follow-up. This work presents a highly promising hydrogel-based surgical sealant in wet and dynamic biological environments for future biomedical applications.


Assuntos
Adesivos , Hidrogéis , Humanos , Hidrogéis/química , Adesivos/química , Polifenóis
4.
Plant Commun ; 4(2): 100431, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36071668

RESUMO

Orychophragmus violaceus, referred to as "eryuelan" (February orchid) in China, is an early-flowering ornamental plant. The high oil content and abundance of unsaturated fatty acids in O. violaceus seeds make it a potential high-quality oilseed crop. Here, we generated a whole-genome assembly for O. violaceus using Nanopore and Hi-C sequencing technologies. The assembled genome of O. violaceus was ∼1.3 Gb in size, with 12 pairs of chromosomes. Through investigation of ancestral genome evolution, we determined that the genome of O. violaceus experienced a tetraploidization event from a diploid progenitor with the translocated proto-Calepineae karyotype. Comparisons between the reconstructed subgenomes of O. violaceus identified indicators of subgenome dominance, indicating that subgenomes likely originated via allotetraploidy. O. violaceus was phylogenetically close to the Brassica genus, and tetraploidy in O. violaceus occurred approximately 8.57 million years ago, close in time to the whole-genome triplication of Brassica that likely arose via an intermediate tetraploid lineage. However, the tetraploidization in Orychophragmus was independent of the hexaploidization in Brassica, as evidenced by the results from detailed phylogenetic analyses and comparisons of the break and fusion points of ancestral genomic blocks. Moreover, identification of multi-copy genes regulating the production of high-quality oil highlighted the contributions of both tetraploidization and tandem duplication to functional innovation in O. violaceus. These findings provide novel insights into the polyploidization evolution of plant species and will promote both functional genomic studies and domestication/breeding efforts in O. violaceus.


Assuntos
Brassicaceae , Brassicaceae/genética , Filogenia , Hibridização Genética , Genoma de Planta , Genômica
5.
Bioresour Technol ; 289: 121754, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323714

RESUMO

Acetonitrile (ACN) is a very volatile, toxic and nitrogen-rich organic compound. To enhance ACN wastewater treatment, a novel hybrid membrane-aerated bioreactor (MAB) containing aerated and non-aerated zones was established. A polypropylene hollow fiber membrane module (HF) and a silicone rubber membrane module (SR) were separately used as the bubble-free aeration diffuser and the biofilm carrier, and the non-aerated zones of these two types of reactors were packed with ceramsite. When the influent ACN loading was 1.200 kg/m3·d, under aeration pressures of 20 kPa in the HF-MAB and 40 kPa in the SR-MAB, ACN removal loadings of 1.116 kg/m3·d and 1.004 kg/m3·d, respectively, were achieved, and the TN (total nitrogen) removal loadings were 0.267 kg/m3·d and 0.246 kg/m3·d, respectively. In the MABs, different stratified biofilm structures of the two zones and the diffusion and counter-diffusion of oxygen synergistically promoted ACN degradation, nitrification and denitrification.


Assuntos
Reatores Biológicos , Águas Residuárias/química , Acetonitrilas/metabolismo , Biofilmes , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Nitrificação , Nitrogênio/química , Oxigênio/metabolismo , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA