Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37975291

RESUMO

Significance: Sickle cell disease (SCD) is the most common inherited diathesis affecting mostly underserved populations globally. SCD is characterized by chronic pain and fatigue, severe acute painful crises requiring hospitalization and opioids, strokes, multiorgan damage, and a shortened life span. Symptoms may appear shortly after birth, and, in less developed countries, most children with SCD die before attaining age 5. Hematopoietic stem cell transplant and gene therapy offer a curative therapeutic approach, but, due to many challenges, are limited in their availability and effectiveness for a majority of persons with SCD. A critical unmet need is to develop safe and effective novel targeted therapies. A wide array of drugs currently undergoing clinical investigation hold promise for an expanded pharmacological armamentarium against SCD. Recent Advances: Hydroxyurea, the most widely used intervention for SCD management, has improved the survival in the Western world and more recently, voxelotor (R-state-stabilizer), l-glutamine, and crizanlizumab (anti-P-selectin antibody) have been approved by the Food and Drug Administration (FDA) for use in SCD. The recent FDA approval emphasizes the need to revisit the advances in understanding the core pathophysiology of SCD to accelerate novel evidence-based strategies to treat SCD. The biomechanical breakdown of erythrocytesis, the core pathophysiology of SCD, is associated with intrinsic factors, including the composition of hemoglobin, membrane integrity, cellular volume, hydration, andoxidative stress. Critical Issues and Future Directions: In this context, this review focuses on advances in emerging nongenetic interventions directed toward the therapeutic targets intrinsic to sickle red blood cells (RBCs), which can prevent impaired rheology of RBCs to impede disease progression and reduce the sequelae of comorbidities, including pain, vasculopathy, and organ damage. In addition, given the intricate pathophysiology of the disease, it is unlikely that a single pharmacotherapeutic intervention will comprehensively ameliorate the multifaceted complications associated with SCD. However, the availability of multiple drug options affords the opportunity for individualized therapeutic regimens tailored to specific SCD-related complications. Furthermore, it opens avenues for combination drug therapy, capitalizing on distinct mechanisms of action and profiles of adverse effects.

2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628724

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major comorbidity of cancer. Multiple clinical interventions have been studied to effectively treat CIPN, but the results have been disappointing, with no or little efficacy. Hence, understanding the pathophysiology of CIPN is critical to improving the quality of life and clinical outcomes of cancer patients. Although various mechanisms of CIPN have been described in neuropathic anti-cancer agents, the neuroinflammatory process involving cytotoxic/proinflammatory immune cells remains underexamined. While mast cells (MCs) and natural killer (NK) cells are the key innate immune compartments implicated in the pathogenesis of peripheral neuropathy, their role in CIPN has remained under-appreciated. Moreover, the biology of proinflammatory cytokines associated with MCs and NK cells in CIPN is particularly under-evaluated. In this review, we will focus on the interactions between MCs, NK cells, and neuronal structure and their communications via proinflammatory cytokines, including TNFα, IL-1ß, and IL-6, in peripheral neuropathy in association with tumor immunology. This review will help lay the foundation to investigate MCs, NK cells, and cytokines to advance future therapeutic strategies for CIPN.


Assuntos
Mastócitos , Doenças do Sistema Nervoso Periférico , Humanos , Qualidade de Vida , Células Matadoras Naturais , Neurônios , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Citocinas
3.
Invest New Drugs ; 41(1): 70-75, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36441436

RESUMO

The opioid receptor (OR) antagonist naltrexone inhibits estrogen receptor-α (ER) function in model systems. The goal of this study was to determine the clinical activity of naltrexone in patients with ER-positive metastatic breast cancer. Patients with hormone receptor positive metastatic breast cancer were enrolled on a phase II study of naltrexone. An escalating dose scheme was used to reach the planned dose of 50 mg daily. The primary objective of the study was to evaluate response to therapy as measured by stabilization or reduction of the tumor Maximum Standardized Uptake Value (SUVmax) at 4 weeks by PET-CT scan. The secondary objectives included safety assessment and tumor SUVmax at 8 weeks. Out of 13 patients we enrolled, 8 patients had serial PET-CT scans that were evaluable for response. Of these 8 patients, 5 had stable or decreased SUVmax values at 4 weeks and 3 had clinical or imaging progression. Median time to progression was short at 7 weeks. Naltrexone was well tolerated. There were no discontinuations due to toxicity and no grade 3 or 4 toxicities were noted. Naltrexone showed modest activity in this short study suggesting the contribution of opioid receptors in ER-positive breast cancer. Our data do not support further development of naltrexone in hormone refractory breast cancer. It is possible that more potent peripherally acting OR antagonists may have a greater effect. (ClinicalTrials.gov Identifier: NCT00379197 September 21, 2006).


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Naltrexona/efeitos adversos , Receptores de Estrogênio , Hormônios/uso terapêutico
4.
Front Oncol ; 12: 969429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147914

RESUMO

Sickle cell disease (SCD) is a serious global health problem, and currently, the only curative option is hematopoietic stem cell transplant (HCT). However, myeloablative total body irradiation (TBI)-based HCT is associated with high mortality/morbidity in SCD patients. Therefore, reduced-intensity (2-4 Gy) total body radiation (TBI) is currently used as a conditioning regimen resulting in mixed chimerism with the rescue of the SCD disease characteristic features. However, donor chimerism gradually reduces in a few years, resulting in a relapse of the SCD features, and organ toxicities remained the primary concern for long-term survivors. Targeted marrow irradiation (TMI) is a novel technique developed to deliver radiation to the desired target while sparing vital organs and is successfully used for HCT in refractory/relapsed patients with leukemia. However, it is unknown if TMI will be an effective treatment for a hematological disorder like SCD without adverse effects seen on TBI. Therefore, we examined preclinical feasibility to determine the tolerated dose escalation, its impact on donor engraftment, and reduction in organ damage using our recently developed TMI in the humanized homozygous Berkley SCD mouse model (SS). We show that dose-escalated TMI (8:2) (8 Gy to the bone marrow and 2 Gy to the rest of the body) is tolerated with reduced organ pathology compared with TBI (4:4)-treated mice. Furthermore, with increased SCD control (AA) mice (25 million) donor BM cells, TMI (8:2)-treated mice show successful long-term engraftment while engraftment failed in TBI (2:2)-treated mice. We further evaluated the benefit of dose-escalated TMI and donor cell engraftment in alleviating SCD features. The donor engraftment in SCD mice completely rescues SCD disease features including recovery in RBCs, hematocrit, platelets, and reduced reticulocytes. Moreover, two-photon microscopy imaging of skull BM of transplanted SCD mice shows reduced vessel density and leakiness compared to untreated control SCD mice, indicating vascular recovery post-BMT.

5.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204148

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a significant dose-limiting long-term sequela in cancer patients undergoing treatment, often leading to discontinuation of treatment. No established therapy exists to prevent and/or ameliorate CIPN. Reactive oxygen species (ROS) and mitochondrial dysregulation have been proposed to underlie the pathobiology of CIPN. However, interventions to prevent and treat CIPN are largely ineffective. Additional factors and mechanism-based targets need to be identified to develop novel strategies to target CIPN. The role of oxidative stress appears to be central, but the contribution of endoplasmic reticulum (ER) stress remains under-examined in the pathobiology of CIPN. This review describes the significance of ER stress and its contribution to CIPN, the protective role of herbal agents in countering ER stress in nervous system-associated disorders, and their possible repurposing for preventing CIPN.

6.
Int J Radiat Oncol Biol Phys ; 112(4): 951-963, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767936

RESUMO

PURPOSE: Recent initial findings suggest that radiation therapy improves blood perfusion and cellular chemotherapy uptake in mice with leukemia. However, the ability of radiation therapy to influence drug accumulation in the extracellular bone marrow tissue is unknown, due in part to a lack of methodology. This study developed longitudinal quantitative multiphoton microscopy (L-QMPM) to characterize the bone marrow vasculature (BMV) and drug accumulation in the extracellular bone marrow tissue before and after radiation therapy in mice bearing leukemia. METHODS AND MATERIALS: We developed a longitudinal window implant for L-QMPM imaging of the calvarium BMV before, 2 days after, and 5 days after total body irradiation (TBI). Live time-lapsed images of a fluorescent drug surrogate were used to obtain measurements, including tissue wash-in slope (WIStissue) to measure extracellular drug accumulation. We performed L-QMPM imaging on healthy C57BL/6 (WT) mice, as well as mice bearing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). RESULTS: Implants had no effects on calvarium dose, and parameters for wild-type untreated mice were stable during imaging. We observed decreased vessel diameter, vessel blood flow, and WIStissue with the onset of AML and ALL. Two to 10 Gy TBI increased WIStissue and vessel diameter 2 days after radiation therapy in all 3 groups of mice and increased single-vessel blood flow in mice bearing ALL and AML. Increased WIStissue was observed 5 days after 10 Gy TBI or 4 Gy split-dose TBI (2 treatments of 2 Gy spaced 3 days apart). CONCLUSIONS: L-QMPM provides stable functional assessments of the BMV. Nonmyeloablative and myeloablative TBI increases extracellular drug accumulation in the leukemic bone marrow 2 to 5 days posttreatment, likely through improved blood perfusion and drug exchange from the BMV to the extravascular tissue. Our data show that neo-adjuvant TBI at doses from 2 Gy to 10 Gy conditions the BMV to improve drug transport to the bone marrow.


Assuntos
Medula Óssea , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Medula Óssea/diagnóstico por imagem , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Irradiação Corporal Total
7.
Neurosci Lett ; 749: 135720, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582187

RESUMO

As advances in diagnostics and therapeutic strategies in oncology have increased the number of cancer survivors, the investigation of the mechanisms associated with long-term cognitive complications of cancer treatment has become an important topic of interest. The neurotoxic effects of chemotherapeutic agents have been described in pre-clinical and clinical research. In vitro and rodent studies have identified some underlying mechanisms contributing to chemotherapy-induced neurotoxicity and cognitive impairment for various chemotherapy drugs and other cancer treatments. However, investigation of the direct biological effects of cancer and other potential contributing factors in the pathogenesis of cancer-related cognitive impairment (CRCI) has only recently come into focus. This review will highlight evidence from pre-clinical tumor-bearing rodent models suggesting that cancer influences the cognitive and behavioral changes reported in human cancer populations through direct or indirect pathways that alter the normal neuroinflammatory responses, induce structural brain deficits, and decrease neurogenesis. We reflect on human clinical cancer research indicating that cognitive and behavioral changes precede cancer treatment in some malignancies. We also highlight implications for future areas of CRCI research based on novel findings on the interplay between cancer, chemotherapy, inflammation, tau pathology, and dysregulation of the microbiota-gut-brain axis.


Assuntos
Antineoplásicos/farmacologia , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Neurogênese/efeitos dos fármacos
8.
Neurosci Lett ; 744: 135601, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33387660

RESUMO

We examined the association between endogenous opioid ß-endorphin, cancer progression and pain in a transgenic mouse model of breast cancer, with a rat C3(1) simian virus 40 large tumor antigen fusion gene (C3TAg). C3TAg mice develop ductal epithelial atypia at 8 weeks, progression to intra-epithelial neoplasia at 12 weeks, and invasive carcinoma with palpable tumors at 16 weeks. Consistent with invasive carcinoma at 4 months of age, C3TAg mice demonstrate a significant increase in hyperalgesia compared to younger C3TAg or control FVBN mice without tumors. Our data show that the growing tumor contributes to circulating ß-endorphin. As an endogenous ligand of mu opioid receptor, ß-endorphin has analgesic activity. Paradoxically, we observed an increase in pain in transgenic breast cancer mice with significantly high circulating and tumor-associated ß-endorphin. Increased circulating ß-endorphin correlates with increasing tumor burden. ß-endorphin induced the activation of mitogenic and survival-promoting signaling pathways, MAPK/ERK 1/2, STAT3 and Akt, observed by us in human MDA-MB-231 cells suggesting a role for ß-endorphin in breast cancer progression and associated pain.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Dor do Câncer/sangue , Dor do Câncer/diagnóstico , Progressão da Doença , beta-Endorfina/sangue , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-33146308

RESUMO

Bartonella spp. are re-emerging and neglected bacterial pathogens. The natural reservoirs for several species of this genus are domestic animals such as cats and dogs, the most common pets in the USA and Brazil. Some cat studies suggest that the infection is more prevalent in tropical and poverty-stricken areas. These bacteria were associated with a wide spectrum of clinical manifestations: fever of unknown origin, endocarditis, angiomatosis, chronic lymphadenopathy, hepatitis, fatigue, paresthesia and pain. Our group has already demonstrated that B. henselae -infected sickle cell disease mice present with hyperalgesia. We hypothesized that even immunocompetent mice infected by B. henselae would show an increased and persistent mechanical sensitivity. Five ten-week old male BALB/c mice were intraperitoneally inoculated with a 30 µL of suspension containing 10 4 CFU/mL of B. henselae, while five others were inoculated with an equal volume of saline solution. Four days after bacterial inoculation, the mechanical paw withdrawal threshold was measured using von Frey filaments in all animals, for five consecutive days. The infected animals showed hypersensitivity to mechanical stimuli for five consecutive days. The present study has demonstrated that B. henselae infection induces persistent mechanical hypersensitivity, a signal consistent with pain.


Assuntos
Infecções por Bartonella , Bartonella henselae , Doença da Arranhadura de Gato , Animais , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/veterinária , Brasil , Gatos , Febre , Masculino , Camundongos , Camundongos Endogâmicos BALB C
11.
Blood Adv ; 3(7): 1073-1083, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30944099

RESUMO

Neovascularizing retinopathy is a significant complication of sickle cell disease (SCD), occurring more frequently in HbSC than HbSS disease. This risk difference is concordant with a divergence of angiogenesis risk, as identified by levels of pro- vs anti-angiogenic factors in the sickle patient's blood. Because our prior studies documented that morphine promotes angiogenesis in both malignancy and wound healing, we tested whether chronic opioid treatment would promote retinopathy in NY1DD sickle transgenic mice. After 10 to 15 months of treatment, sickle mice treated with morphine developed neovascularizing retinopathy to a far greater extent than either of the controls (sickle mice treated with saline and wild-type mice treated identically with morphine). Our dissection of the mechanistic linkage between morphine and retinopathy revealed a complex interplay among morphine engagement with its µ opioid receptor (MOR) on retinal endothelial cells (RECs); morphine-induced production of tumor necrosis factor α and interleukin-6 (IL-6), causing increased expression of both MOR and vascular endothelial growth factor receptor 2 (VEGFR2) on RECs; morphine/MOR engagement transactivating VEGFR2; and convergence of MOR, VEGFR2, and IL-6 activation on JAK/STAT3-dependent REC proliferation and angiogenesis. In the NY1DD mice, the result was increased angiogenesis, seen as neovascularizing retinopathy, similar to the retinal pathology occurring in humans with SCD. Therefore, we conclude that chronic opioid exposure, superimposed on the already angiogenic sickle milieu, might enhance risk for retinopathy. These results provide an additional reason for development and application of opioid alternatives for pain control in SCD.


Assuntos
Anemia Falciforme/complicações , Morfina/farmacologia , Neovascularização Patológica/etiologia , Retina/patologia , Analgésicos Opioides/efeitos adversos , Anemia Falciforme/patologia , Animais , Células Endoteliais/patologia , Camundongos , Camundongos Transgênicos , Receptores Opioides mu/metabolismo
12.
Laryngoscope ; 129(7): E238-E246, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30628094

RESUMO

OBJECTIVES/HYPOTHESIS: Postoperative wound-healing complications can be devastating after head and neck surgery. Whereas many patients are expected to have more complications, few objective indicators predict these poorer outcomes. We evaluated wound healing in this population by studying the association between biomarkers and surgical outcomes. STUDY DESIGN: Prospective cohort study. METHODS: A study was performed of head and neck surgery patients at our tertiary care center, from 2012 to 2015. Postsurgical drain fluid was collected 24 hours postoperatively. Biomarkers of wound healing were assayed. These included interleukin (IL)-1, -6, and -8; tumor necrosis factor (TNF)-α; transforming growth factor ß; epidermal growth factor; fibroblast growth factor; C-reactive protein (CRP); vascular endothelial growth factor (VEGF); soluble fms-like tyrosine kinase-1; and placental growth factor. Patient characteristics and clinical outcomes were recorded. Two-sample, two-sided t tests evaluated differences in cytokine levels by clinical outcomes. RESULTS: Twenty-eight patients were enrolled with drain fluid collection. IL-1ß, IL-8, and matrix metalloproteinase (MMP)-9 were significantly higher in the wound fluid of subjects with complications. Patients with longer length of stay in days had statistically higher levels of TNF-α (P = .011), IL-6 (P = .021), IL-8 (P = .004), IL-1ß (P = .004), MMP-1 (P = .002), MMP-2 (P = .022), VEGF-A (P = .038), and CRP (P < .001), and longer length of stay was associated with malignancy. There were no statistically significant associations between baseline clinical characteristics and post-operative complications. CONCLUSIONS: In this head and neck surgical cohort, higher IL-1ß, IL-8, and MMP-9 levels in wound fluid were associated with postoperative complications, and elevation of multiple proinflammatory cytokines was associated with longer length of stay. These findings suggest excessive inflammation in early wound healing may portend poorer clinical outcomes after head and neck surgery. LEVEL OF EVIDENCE: 2b Laryngoscope, 129:E238-E246, 2019.


Assuntos
Citocinas/metabolismo , Cabeça/cirurgia , Pescoço/cirurgia , Complicações Pós-Operatórias/etiologia , Ferida Cirúrgica/metabolismo , Cicatrização/fisiologia , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
13.
Vector Borne Zoonotic Dis ; 19(2): 102-105, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30272535

RESUMO

BACKGROUND: Sickle cell disease (SCD) is the most prevalent hematologic genetic disorder. Acute vaso-occlusive painful crisis is the hallmark of the disease and may be related to subclinical infections. Bartonellosis, a rare and neglected infection, is caused by Bartonella spp., which can be found in donated blood. These bacteria cause intraerythrocytic and endothelial infection and pain, all of which occur in SCD. It is likely that this infection is transmitted to SCD patients during transfusion from donated blood, leading to pain. We, therefore, evaluated whether Bartonella henselae infection would cause hyperalgesia in mice with SCD. MATERIALS AND METHODS: SCD mice were generated by transplantation of nucleated bone marrow cells harvested from transgenic Berkeley sickle mice into 2-month-old irradiated C57BL/6 mice. We infected four SCD mice by intraperitoneal inoculation with B. henselae, and inoculated four other mice with the same volume of saline. Mechanical hyperalgesia was determined using von Frey monofilaments by two blinded observers. Thereafter, the animals were anesthetized and euthanized to collect blood, liver, and spleen samples to seek B. henselae infection by PCR. FINDINGS: We confirmed the experimental infection in all animals by PCR. Tremors and mechanical hypersensitivity were demonstrated by SCD mice infected with B. henselae infection but not in those receiving saline. CONCLUSION: B. henselae infection may be related to pain and other symptoms in SCD.


Assuntos
Angiomatose Bacilar/patologia , Bartonella henselae , Hiperalgesia/etiologia , Anemia Falciforme , Animais , DNA Bacteriano , Camundongos , Reação em Cadeia da Polimerase
14.
Adv Wound Care (New Rochelle) ; 7(10): 323-332, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30374417

RESUMO

Objective: Sickle cell ulcers (SCUs) are a devastating comorbidity affecting patients with sickle cell disease (SCD). SCUs form over the medial or lateral malleoli of the lower extremity, are slow to heal, and prone to recidivism. Some SCUs may never heal, leading to chronic pain and foot deformities. There is no specific and effective therapy for SCUs. Systemic deferoxamine (DFO) has been demonstrated to prevent some of the sequelae of SCD by chelating iron. In this study, we tested the ability of DFO delivered via a transdermal delivery system (DFO-TDDS) to accelerate healing in a murine model of SCU. Approach: Excisional wounds were created in a transgenic murine model of SCD expressing >99% human sickle hemoglobin, and healing rates were compared with wounds in wild-type mice. Next, excisional wounds in SCD mice were treated with DFO-TDDS, DFO injection, or left untreated. Wound closure rates, histology, and iron in the healed wounds were analyzed. Results: Wounds in SCD mice healed significantly slower than wild-type mice (***p < 0.001). DFO-TDDS-treated wounds demonstrated significantly accelerated time to closure, reduced size, and improved wound remodeling compared with untreated wounds (***p < 0.001) and DFO injection treatment (*p < 0.05). DFO released from the TDDS into wounds resulted in chelation of excessive dermal-free iron. Innovation: DFO-TDDS is a novel therapeutic that is effective in healing wounds in sickle cell mice. Conclusion: DFO-TDDS significantly accelerates healing of murine SCUs by chelation of excessive free iron and is currently manufactured in an FDA-compliant facility to be translated for treating human SCUs.

15.
Immunol Rev ; 282(1): 168-187, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431216

RESUMO

Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer.


Assuntos
Dermatite Atópica/imunologia , Mastócitos/fisiologia , Inflamação Neurogênica/imunologia , Dor/imunologia , Prurido/imunologia , Animais , Comunicação Celular , Microambiente Celular , Humanos , Fibras Nervosas , Neuropeptídeos/metabolismo , Estresse Psicológico
17.
Cell Chem Biol ; 24(10): 1259-1275.e6, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28919040

RESUMO

The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and inhibited AMPKα. CYP3A4 knockdown activated AMPKα, promoted autophagy, and prevented mammary tumor formation. The diabetes drug metformin inhibited CYP3A4-mediated EET biosynthesis and depleted cancer cell-intrinsic EETs. Metformin bound to the active-site heme of CYP3A4 in a co-crystal structure, establishing CYP3A4 as a biguanide target. Structure-based design led to discovery of N1-hexyl-N5-benzyl-biguanide (HBB), which bound to the CYP3A4 heme with higher affinity than metformin. HBB potently and specifically inhibited CYP3A4 AA epoxygenase activity. HBB also inhibited growth of established ER+ mammary tumors and suppressed intratumoral mTOR. CYP3A4 AA epoxygenase inhibition by biguanides thus demonstrates convergence between eicosanoid activity in mitochondria and biguanide action in cancer, opening a new avenue for cancer drug discovery.


Assuntos
Biguanidas/metabolismo , Biguanidas/farmacologia , Citocromo P-450 CYP3A/metabolismo , Heme/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biguanidas/química , Neoplasias da Mama/patologia , Domínio Catalítico , Respiração Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/deficiência , Citocromo P-450 CYP3A/genética , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Transporte Proteico/efeitos dos fármacos
18.
Am J Hematol ; 92(11): 1119-1130, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699284

RESUMO

Elaboration of tumor necrosis factor (TNF) is a very early event in development of ischemia/reperfusion injury pathophysiology. Therefore, TNF may be a prominent mediator of endothelial cell and vascular wall dysfunction in sickle cell anemia, a hypothesis we addressed using NY1DD, S+SAntilles , and SS-BERK sickle transgenic mice. Transfusion experiments revealed participation of abnormally activated blood monocytes exerting an endothelial activating effect, dependent upon Egr-1 in both vessel wall and blood cells, and upon NFκB(p50) in a blood cell only. Involvement of TNF was identified by beneficial impact from TNF blockers, etanercept and infliximab, with less benefit from an IL-1 blocker, anakinra. In therapeutic studies, etanercept ameliorated multiple disturbances of the murine sickle condition: monocyte activation, blood biomarkers of inflammation, low platelet count and Hb, vascular stasis triggered by hypoxia/reoxygenation (but not if triggered by hemin infusion), tissue production of neuro-inflammatory mediators, endothelial activation (monitored by tissue factor and VCAM-1 expression), histopathologic liver injury, and three surrogate markers of pulmonary hypertension (perivascular inflammatory aggregates, arteriolar muscularization, and right ventricular mean systolic pressure). In aggregate, these studies identify a prominent-and possibly dominant-role for an abnormal monocyte-TNF-endothelial activation axis in the sickle context. Its presence, plus the many benefits of etanercept observed here, argue that pilot testing of TNF blockade should be considered for human sickle cell anemia, a challenging but achievable translational research goal.


Assuntos
Anemia Falciforme/metabolismo , Células Endoteliais/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Anemia Falciforme/diagnóstico , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Animais , Anticorpos Monoclonais/farmacologia , Biomarcadores , Transplante de Medula Óssea , Agregação Celular/genética , Agregação Celular/imunologia , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Endotélio Vascular/metabolismo , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Testes de Função Cardíaca , Humanos , Mediadores da Inflamação , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Terapia de Alvo Molecular , Monócitos/efeitos dos fármacos , Monócitos/imunologia , NF-kappa B/deficiência , NF-kappa B/genética , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tromboplastina/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Molécula 1 de Adesão de Célula Vascular/metabolismo
19.
Sci Rep ; 6: 34493, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27687125

RESUMO

Integrative approaches such as electroacupuncture, devoid of drug effects are gaining prominence for treating pain. Understanding the mechanisms of electroacupuncture induced analgesia would benefit chronic pain conditions such as sickle cell disease (SCD), for which patients may require opioid analgesics throughout life. Mouse models are instructive in developing a mechanistic understanding of pain, but the anesthesia/restraint required to administer electroacupuncture may alter the underlying mechanisms. To overcome these limitations, we developed a method to perform electroacupuncture in conscious, freely moving, unrestrained mice. Using this technique we demonstrate a significant analgesic effect in transgenic mouse models of SCD and cancer as well as complete Freund's adjuvant-induced pain. We demonstrate a comprehensive antinociceptive effect on mechanical, cold and deep tissue hyperalagesia in both genders. Interestingly, individual mice showed a variable response to electroacupuncture, categorized into high-, moderate-, and non-responders. Mechanistically, electroacupuncture significantly ameliorated inflammatory and nociceptive mediators both peripherally and centrally in sickle mice correlative to the antinociceptive response. Application of sub-optimal doses of morphine in electroacupuncture-treated moderate-responders produced equivalent antinociception as obtained in high-responders. Electroacupuncture in conscious freely moving mice offers an effective approach to develop a mechanism-based understanding of analgesia devoid of the influence of anesthetics or restraints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA