Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963108

RESUMO

In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAget-ing Chimeras) technology has been particularly pronounced since its introduction in the 21st cen-tury. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This ex-panded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, high-lighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a ver-satile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.

2.
Int J Biol Macromol ; : 133634, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964690

RESUMO

Traditional medicines have reportedly treated SARS-CoV-2 infection. Substantial evidence shows that fish oil supplements promote human immune function, suggesting they may lessen susceptibility to SARS-CoV-2 infection and suppress viral replication by inducing interferon. Fish oil was subjected to partition chromatography and separated into two compounds (EP01 and DH01). Isolated compounds were purified and characterized using UV, FTIR, NMR, and mass spectrometry to confirm their identity. Molecular docking was studied on the SARS CoV-2 variants of concern; SARS CoV-2 WT (PDB: 6VXX), SARS CoV-2 Alpha variant (PDB: 7LWS), SARS CoV-2 Delta variant (PDB: 7TOU), SARS CoV-2 Gamma variant (PDB: 7V78), SARS CoV-2 Kappa variant (PDB: 7VX9), and SARS CoV-2 Omicron variant (PDB: 7QO7) and TMPRSS2 (PDB: 7Y0E). Further selected protein-ligand complexes were subjected to 100 ns MD simulations to predict their biological potential in the SARS-CoV-2 treatment. In-vitro biological studies were carried out to support in-silico findings. Isolated compounds EP01 and DH01 were identified as 5-Tridecyltetrahydro-2H-pyran-2-one and 5-Heptadecyltetrahydro-2H-pyran-2-one, respectively. The compound EP01 significantly reduced (93.24 %) the viral RNA copy number with an IC50 of ~8.661 µM. EP01 proved to be a potent antiviral by in-vitro method against the SARS-CoV-2 clinical isolate, making it a promising antiviral candidate, with a single dose capable of preventing viral replication.

3.
Phytother Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831683

RESUMO

Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.

4.
J Ethnopharmacol ; 327: 118055, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484951

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trachyspermum roxburghianum (DC.) H. Wolff, commonly known as 'Ajamoda,' is a neglected Indian spice highly used in Ayurveda and folklore remedies as an antimicrobial for chronic wounds and discharges, along with many other disease conditions. AIM OF THE STUDY: The objective of the study was to explore chemical composition and to investigate the antioxidant, antimicrobial, analgesic, and wound healing activities of T. roxburghianum fruit essential oil from India. MATERIALS AND METHODS: The phytochemical characterization of the oil was determined through standard qualitative procedures and the gas chromatography-mass spectrometry (GC-MS) technique. The in vitro antioxidant aptitude was assessed by scavenging DPPH and ABTS radicals. The antimicrobial potential of the oil was investigated using the disc diffusion method, followed by the determination of minimum inhibitory concentration against Gram-positive and Gram-negative bacterial and fungal strains. The analgesic potential was evaluated using thermal and chemically induced pain models in Swiss albino mice. Wound healing was assessed in vivo, including determining wound contraction rates, histopathology, and hydroxyproline estimation, using the excision wound model in Swiss albino mice. RESULTS: GC-MS analysis identified 55 compounds with major terpenoids, including thymol (13.8%), limonene (11.5%), and others. Substantial radical-scavenging activity was exhibited by T. roxburghianum fruit essential oil (TREO) (IC50 94.41 ± 2.00 µg/mL in DPPH assay and 91.28 ± 1.94 µg/mL in ABTS assay). Microorganisms were inhibited with low MIC (2 µL/mL for the inhibition of Staphylococcus aureus and Bacillus subtilis; 4 µL/mL against Salmonella typhi and 16 µL/mL against Candida albicans). In the cytotoxicity study, no cytotoxicity was observed on the Monkey Normal Kidney Cell line (Vero). Significant antinociceptive effects were observed (25.47 ± 1.10 % of inhibition at 100 mg/kg and 44.31 ± 1.69 % at 200 mg/kg). A remarkable rate of wound closure and epithelization, along with a marked increase in hydroxyproline content, were observed for the oil during wound healing in mice. CONCLUSIONS: The results suggested that oil could be utilized as a potential source of wound healing therapeutics.


Assuntos
Anti-Infecciosos , Benzotiazóis , Óleos Voláteis , Ácidos Sulfônicos , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Hidroxiprolina , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Cicatrização , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Testes de Sensibilidade Microbiana
5.
Nat Prod Res ; 38(5): 719-726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36960955

RESUMO

This work aimed to investigate the chemical composition, antioxidant activity, antinociceptive effect, and wound healing activity of the Lonicera caprifolium L. flower essential oil (LCEO). Linalool (16.42%), d-limonene (9.99%), and α-cadinol (10.65%) were the most prevalent components of the LCEO. The LCEO revealed moderate DPPH and ABTS radical-scavenging activity. LCEO exhibited potent antinociceptive activity in acetic acid-induced writhing and hot plate-induced pain model; LCEO reduced 73.88 ± 2.78% of writhing and significantly increased pain withdrawal latency in the mice, respectively. The LCEO also presented a potent wound healing effect, with 98.08 ± 1.37% wound closure on the 12th day of treatment. The results of the study demonstrate antioxidant and wound healing potential with antinociceptive effect. To the best of our knowledge, this is the first report on the bioactivities of L. caprifolium L. essential oil.


Assuntos
Caprifoliaceae , Lonicera , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/química , Dor/tratamento farmacológico , Antioxidantes/química , Analgésicos/farmacologia , Analgésicos/química
6.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38139763

RESUMO

Psidium guajava L. is a small evergreen tree known for its magnificent medicinal and nutritional value. This study aimed to evaluate the nutritional profile and in vitro pharmacological potentialities of the different leaf extracts of four cultivars of Psidium guajava namely Surka chitti, Allahabad safeda, Karela, and Lucknow-49. The standard procedures of the Association of Official Analytical Chemists (AOAC) were followed to carry out the nutritional analysis and all of the cultivars recorded the presence of elements at a nominal range. The highest presence of phenols (125.77 mg GAE/g) and flavonoids (92.38 mg QE/g) in the methanolic leaf extract of the Karela cultivar was recorded. A wide range of minerals such as sodium, phosphorus, magnesium, zinc, and boron were recorded with a higher percentage in the Karela cultivar of Psidium guajava. In the enzyme inhibitory assays, Allahabad safeda showed potential inhibition with an IC50 of 113.31 ± 1.07, 98.2 ± 0.66 and 95.73 ± 0.39 µg/mL in α-amylase, α-glucosidase, and tyrosinase inhibition assays, respectively. The strong antioxidant effect was established by Lucknow-49 (IC50 of 74.43 ± 1.86 µg/mL) and Allahabad safeda (IC50 of 78.93 ± 0.46 µg/mL) for ABTS and DPPH assays, respectively. The ethyl acetate and methanolic leaf extracts of the Allahabad safeda cultivar showed better inhibition against Pseudomonas aeruginosa with an MIC of 14.84 and 28.69 µg/mL, respectively. A decent mean zone of inhibition was recorded in methanolic leaf extract that ranged from 21-25 mm in diameter against the tested bacterial strains (Proteus vulgaris, Bacillus subtilis, and P. aeruginosa). This is the first scientific report on the comparative and comprehensive analysis of indigenous guava cultivars to evidently shortlist the elite cultivars with enriched dietary nutrition and biological activities.

7.
Microb Pathog ; 184: 106380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821049

RESUMO

In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.


Assuntos
Begoniaceae , Rutina , Ratos , Animais , Rutina/farmacologia , Rutina/uso terapêutico , Shigella flexneri , Begoniaceae/metabolismo , Antidiarreicos/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Simulação de Acoplamento Molecular , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Citocinas/metabolismo , Adenosina Trifosfatases/metabolismo
8.
Bioorg Chem ; 139: 106720, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480814

RESUMO

The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.


Assuntos
Complexo de Endopeptidases do Proteassoma , Quimera de Direcionamento de Proteólise , Proteólise , Anticorpos , Catálise
9.
Heliyon ; 9(5): e15952, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37187902

RESUMO

This study aimed to assess the phytochemical composition, in vitro antioxidant, cytotoxicity, and in vivo anti-inflammatory activities of the methanolic extract of Ailanthus excelsa (Simaroubaceae) stem bark and its fractions. Quantitative phytochemical analysis revealed that methanolic extract and all fractions contained a high level of flavonoids (20.40-22.91 mg/g QE), phenolics (1.72-7.41 mg/g GAE), saponins (33.28-51.87 mg/g DE), and alkaloids (0.21-0.33 mg/g AE). The antioxidant potential was evaluated in vitro using a range of assays, i.e., DPPH•, ABTS radical scavenging ability, and total antioxidant capacity. The chloroform and ethyl acetate fractions showed stronger antioxidant activity than the methanol extract. In vitro cytotoxic activity was investigated in three human tumor cell lines (A-549, MCF7 and HepG2) using the SRB assay. In addition, the in vivo anti-inflammatory effect was assessed by carrageenan-induced paw edema in rats. The chloroform fraction showed a more pronounced effect by effectively controlling the growth with the lowest GI50 and TGI concentrations. The human lung cancer cell line (A-549) was found to be more sensitive to the chloroform fraction. Furthermore, the chloroform fraction exhibited significant anti-inflammatory activity at a dose of 200 mg/kg in the latter phase of inflammation. Besides, methanol extract and ethyl acetate fraction revealed a significant cytotoxic and anti-inflammatory effects. The chloroform fraction of stem bark showed a strong anti-inflammatory effect in experimental animals and significant COX-2 inhibitory potential in the in vitro experiments. GC-MS analysis of chloroform fraction identified the phytochemicals like caftaric acid, 3,4-dihydroxy phenylacetic acid, arachidonic acid, cinnamic acid, 3-hydroxyphenylvaleric acid, caffeic acid, hexadeconoic acid, and oleanolic acid. The in-silico results suggest that identified compounds have better affinity towards the selected targets, viz. the BAX protein (PDB ID: 1F16), p53-binding protein Mdm-2 (PDB ID: 1YCR), and topoisomerase II (PDB ID: 1QZR). Amongst all, caftaric acid exhibited the best binding affinity for all three targets. Thus, it can be concluded that caftaric acid in combination with other phenolic compounds, might be responsible for the studied activity. Additional in vivo and in vitro studies are required to establish their exact molecular mechanisms and consider them as lead molecules in developing of valuable drugs for treating oxidative stress-induced disorders, cancers, and inflammations.

10.
Int J Pharm ; 628: 122287, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36257467

RESUMO

The present investigation deals with the pazopanib-loaded solid lipid nanoparticles (Pazo-SLNs) and their in-vitro and in-vivo assessments. Quality by design approach employing the Plackett-Burman and central composite design was used to identify the formulation variables, including drug/lipid ratio, organic/aqueous phase ratio, and surfactant concentration with a significant impact on the process and to fabricate a safe and efficacious novel oral dosage form of pazopanib. Particle size, drug loading, entrapment efficiency, and zeta potential of optimal Pazo-SLNs formulation were 210.03 ± 7.68 nm, 13.35 ± 0.95 %, 79.05 ± 2.55 % and -18.29 ± 1.89 mV (n = 3) respectively. FTIR study affirmed the absence of incompatibilities between the drug and the excipients. DSC and XRD measurements substantiated the amorphous form of pazopanib entrapped within the SLNs. Pazo-SLNs demonstrated high cellular uptake, showed substantial cytotoxicity to A-549 lung cancer cells due to apoptotic mode and inhibited tyrosine kinase in-vitro. Pazo-SLNs were found to be stable for three months. SLNs greatly ameliorated the pharmacokinetic behavior and bioavailability (9.5 folds) of pazopanib with a sustained-release pattern (92.67 ± 4.68 % within 24 h). A biodistribution study corroborated the lung targeting potential of Pazo-SLNs. Thus, SLNs could potentially boost the oral route efficacy of pazopanib against cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipídeos , Distribuição Tecidual , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Excipientes , Portadores de Fármacos
11.
Comput Biol Med ; 146: 105668, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667894

RESUMO

Benzalacetophenones, precursors of flavonoids are aromatic ketones and enones and possess the immunostimulant as well as antiviral activities. Thus, benzalacetophenones were screened against the COVID-19 that could be lethal in patients with compromised immunity. We considered ChEBI recorded benzalacetophenone derivative(s) and evaluated their activity against 3C-like protease (3CLpro), papain-like protease (PLpro), and spike protein of SARS-Cov-2 to elucidate their possible role as antiviral agents. The probable targets for each compound were retrieved from DIGEP-Pred at 0.5 pharmacological activity and all the modulated proteins were enriched to identify the probably regulated pathways, biological processes, cellular components, and molecular functions. In addition, molecular docking was performed using AutoDock 4 and the best-identified hits were subjected to all-atom molecular dynamics simulation and binding energy calculations using molecular mechanics Poisson-Boltzmann surface area (MMPBSA). The compound 4-hydroxycordoin showed the highest druglikeness score and regulated nine proteins of which five were down-regulated and four were upregulated. Similarly, enrichment analysis identified the modulation of multiple pathways concerned with the immune system as well as pathways related to infectious and non-infectious diseases. Likewise, 3'-(3-methyl-2-butenyl)-4'-O-ß-d-glucopyranosyl-4,2'-dihydroxychalcone with 3CLpro, 4-hydroxycordoin with PLpro and mallotophilippen D with spike protein receptor-binding domain showed highest binding affinity, revealed stable interactions during the simulation, and scored binding free energy of -26.09 kcal/mol, -16.28 kcal/mol, and -39.2 kcal/mol, respectively. Predicted anti-SARS-CoV-2 activities of the benzalacetophenones reflected the requirement of wet lab studies to develop novel antiviral candidates.


Assuntos
Tratamento Farmacológico da COVID-19 , Chalcona , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
12.
J Ayurveda Integr Med ; 13(2): 100547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35219071

RESUMO

'Bhallatakadi Ghrita' (BG), comprising the plant extracts of Semecarpus anacardium L., Argemone mexicana L., Cocculus hirsutus L., and Woodfordia fruticosa K. 'Murcchana samskara' of ghee before any 'ghrita-paka' preparation evidenced the maximum acceptability for topical application. The current study dealt with the effect of the 'Murcchana' process on the therapeutic efficacy of BG. In the first step, 'Murcchita' ghee was prepared as per reference texts and then developed the 'Murcchita Bhallatakadi Ghrita' (M-BG), which was further assessed for wound healing activity using incision and excision wound animal models. 'Murcchanasamskara' altered the wound healing ability of M-BG (100% wound contraction on 15th post wounding day with 13.50 ± 0.22 days complete re-epithelization time and 562.33 ± 7.37 g breaking strength). The presence of antioxidants, polyphenols, flavonoids, and fatty acids (known for their potential wound healing properties) in M-BG could accelerate the wound contraction rate (P < 0.001). The present investigation has corroborated the Ayurvedic/traditional attribute of 'Murcchanasamskara' to augment the medicinal properties of the BG.

13.
J Complement Integr Med ; 18(3): 507-515, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33691354

RESUMO

OBJECTIVES: Ghee is widely considered as the Indian name for clarified butterfat and processing of ghee with therapeutic herbs i.e., ghrita is renowned for augmenting their medicinal properties. The wound is considered as a challenging clinical problem with early and late complications. To reduce the burden of wounds with the shortest period and minimum scaring, an attempt was made to prepare and evaluate the wound healing potential of ghee based polyherbal formulation. METHODS: Based on local ethnic tribal claims, Semecarpus anacardium L., Argemone mexicana L., Cocculus hirsutus L., and Woodfordia fruticosa K. were collected from Western Ghats of India. The polyherbal Bhallatakadi Ghrita (BG) formulation was prepared as per Ayurvedic procedure and assessed for its wound healing potential using incision and excision wound animal models. RESULTS: BG treated group showed a complete contraction of wounds (99.82 ± 0.10%) (p<0.001) with 15.17 ± 0.40 days re-epithelization time and breaking strength (531.50 ± 5.89) (p<0.05). The hydroxyproline content of BG was found to be significantly higher i.e., 4.23 ± 0.21 (p<0.05). Quantitative estimation of BG exhibited 54.7 ± 3.7 mg100 g-1 of polyphenols and 42.3 ± 5.4 mg.100 g-1 flavonoids in terms of gallic acid and quercetin respectively. HPLC analysis revealed the presence of gallic acid and quercetin whereas the presence of fatty acids was confirmed by GC-MS analysis. CONCLUSIONS: It may conclude that the presence of quercetin, gallic acid, and fatty acids could have accelerated the healing rate of the ghrita formulation, as they have already been known for their potential wound healing properties.


Assuntos
Ghee , Animais , Bovinos , Feminino , Índia , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Cicatrização
14.
Inform Med Unlocked ; 22: 100504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33363251

RESUMO

Bioflavonoids are the largest group of plant-derived polyphenolic compounds with diverse biological potential and have also been proven efficacious in the treatment of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). The present investigation validates molecular docking, simulation, and MM-PBSA studies of fifteen bioactive bioflavonoids derived from plants as a plausible potential antiviral in the treatment of COVID-19. Molecular docking studies for 15 flavonoids on the three SARS CoV-2 proteins, non-structural protein-15 Endoribonuclease (NSP15), the receptor-binding domain of spike protein (RBD of S protein), and main protease (Mpro/3CLpro) were performed and selected protein-ligand complexes were subjected to Molecular Dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-PBSA method. All flavonoids were further assessed for their effectiveness as adjuvant therapy by network pharmacology analysis on the target proteins. The network pharmacology analysis suggests the involvement of selected bioflavonoids in the modulation of multiple signaling pathways like p53, FoxO, MAPK, Wnt, Rap1, TNF, adipocytokine, and leukocyte transendothelial migration which plays a significant role in immunomodulation, minimizing the oxidative stress and inflammation. Molecular docking and molecular dynamics simulation studies illustrated the potential of glycyrrhizic acid, amentoflavone, and mulberroside in inhibiting key SARS-CoV-2 proteins and these results could be exploited further in designing future ligands from natural sources.

15.
J Biomol Struct Dyn ; 39(9): 3244-3255, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32345124

RESUMO

The Public Health Emergency of International Concern declared the widespread outbreak of SARS-CoV-2 as a global pandemic emergency, which has resulted in 1,773,086 confirmed cases including 111,652 human deaths, as on 13 April 2020, as reported to World Health Organization. As of now, there are no vaccines or antiviral drugs declared to be officially useful against the infection. Saikosaponin is a group of oleanane derivatives reported in Chinese medicinal plants and are described for their anti-viral, anti-tumor, anti-inflammatory, anticonvulsant, antinephritis and hepatoprotective activities. They have also been known to have anti-coronaviral property by interfering the early stage of viral replication including absorption and penetration of the virus. Thus, the present study was undertaken to screen and evaluate the potency of different Saikosaponins against different sets of SARS-CoV-2 binding protein via computational molecular docking simulations. Docking was carried out on a Glide module of Schrodinger Maestro 2018-1 MM Share Version on NSP15 (PDB ID: 6W01) and Prefusion 2019-nCoV spike glycoprotein (PDB ID: 6VSB) from SARS-CoV-2. From the binding energy and interaction studies, the Saikosaponins U and V showed the best affinity towards both the proteins suggesting them to be future research molecule as they mark the desire interaction with NSP15, which is responsible for replication of RNA and also with 2019-nCoV spike glycoprotein which manage the connection with ACE2. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteínas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas , Glicoproteína da Espícula de Coronavírus
16.
J Biomed Mater Res A ; 109(8): 1441-1456, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289225

RESUMO

Nanostructured colloidal self-assembly (NCS) is one of the most promising drug delivery carriers in cancer treatment. The present research work aimed towards synthesizing meloxicam (MLX) loaded NCS for its improved circulation half-life and increased cellular internalization. NCS was formulated using glyceryl monoolein, Pluronic® F127, and MLX. Quality by Design experiments with a quadratic model was subjected to optimization of the formulation. The optimized NCS with an average particle size of 185.5 ± 3.02 nm showed higher MLX encapsulation (94.74 ± 3.41%) and sustained release behavior of MLX up to 24 hr. in vitro cytotoxicity of the developed NCS with MCF-7 and MDA-MB-231 cell lines confirmed lower cell viability and a higher rate of cell growth inhibition. This MLX loaded NCS showed dual activity as an antitumor and anti-inflammatory in highly invasive estrogen-dependent MDA-MB-231 cells due to the high expression of cyclooxygenase-2 (COX-2). Besides, an activity of the MLX-NCS was also observed in 3D printed MCF-7 cells. This investigation shows the possible use of MLX-NCS as an efficient cancer drug delivery system with excellent colloidal stability, sustained release of MLX, enhanced antitumor and anti-inflammatory efficacy in 3D printed scaffolds. In contrast to toxicity study in 2D culture, the 3D constructs revealed the activity of the MLX via COX-2 independent mechanism and demonstrated that the relationship between COX-2 expression and antitumor activity of inhibitors is limited. In conclusion, the overall observations and results of this study strengthen the hypothesized development of NCS as a next-generation therapeutics regimen for cancer therapy.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos/administração & dosagem , Coloides/química , Portadores de Fármacos/química , Meloxicam/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Células MCF-7 , Meloxicam/farmacologia , Nanoestruturas/química , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA