Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3187, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320633

RESUMO

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Assuntos
Autofagia/fisiologia , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Denervação Muscular , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Placa Motora/patologia , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética
2.
Skelet Muscle ; 6: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004103

RESUMO

BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. CONCLUSIONS: Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Complexos Multiproteicos/metabolismo , Músculo Esquelético/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Dieta Hiperlipídica , Genótipo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Insulina/sangue , Resistência à Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Doenças Musculares/enzimologia , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Magreza/enzimologia , Magreza/genética , Fatores de Tempo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Regulação para Cima
3.
Sci Signal ; 8(402): ra113, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26554817

RESUMO

Skeletal muscle is the largest organ, comprising 40% of the total body lean mass, and affects whole-body metabolism in multiple ways. We investigated the signaling pathways involved in this process using TSCmKO mice, which have a skeletal muscle-specific depletion of TSC1 (tuberous sclerosis complex 1). This deficiency results in the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), which enhances cell growth by promoting protein synthesis. TSCmKO mice were lean, with increased insulin sensitivity, as well as changes in white and brown adipose tissue and liver indicative of increased fatty acid oxidation. These differences were due to increased plasma concentrations of fibroblast growth factor 21 (FGF21), a hormone that stimulates glucose uptake and fatty acid oxidation. The skeletal muscle of TSCmKO mice released FGF21 because of mTORC1-triggered endoplasmic reticulum (ER) stress and activation of a pathway involving PERK (protein kinase RNA-like ER kinase), eIF2α (eukaryotic translation initiation factor 2α), and ATF4 (activating transcription factor 4). Treatment of TSCmKO mice with a chemical chaperone that alleviates ER stress reduced FGF21 production in muscle and increased body weight. Moreover, injection of function-blocking antibodies directed against FGF21 largely normalized the metabolic phenotype of the mice. Thus, sustained activation of mTORC1 signaling in skeletal muscle regulated whole-body metabolism through the induction of FGF21, which, over the long term, caused severe lipodystrophy.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Glucose/metabolismo , Resistência à Insulina , Lipodistrofia/etiologia , Lipodistrofia/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Fenótipo , Fenilbutiratos/farmacologia , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
4.
Neurochem Int ; 90: 152-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26265052

RESUMO

Protein misfolding, mitochondrial dysfunction and oxidative stress are common pathomechanisms that underlie neurodegenerative diseases. In prion disease, central to these processes is the post-translational transformation of cellular prion protein (PrP(c)) to the aberrant conformationally altered isoform; PrP(Sc). This can trigger oxidative reactions and impair mitochondrial function by increasing levels of peroxynitrite, causing damage through formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. The 6 member Peroxiredoxin (Prdx) family of redox proteins are thought to be critical protectors against oxidative stress via reduction of H2O2, hydroperoxides and peroxynitrite. In our in vitro studies cellular metabolism of SK-N-SH human neuroblastoma cells was significantly decreased in the presence of H2O2 (oxidative stressor) or CoCl2 (cellular hypoxia), but was rescued by treatment with exogenous Prdx6, suggesting that its protective action is in part mediated through a direct action. We also show that CoCl2-induced apoptosis was significantly decreased by treatment with exogenous Prdx6. We proposed a redox regulator role for Prdx6 in regulating and maintaining cellular homeostasis via its ability to control ROS levels that could otherwise accelerate the emergence of prion-related neuropathology. To confirm this, we established prion disease in mice with and without astrocyte-specific antioxidant protein Prdx6, and demonstrated that expression of Prdx6 protein in Prdx6 Tg ME7-animals reduced severity of the behavioural deficit, decreased neuropathology and increased survival time compared to Prdx6 KO ME7-animals. We conclude that antioxidant Prdx6 attenuates prion-related neuropathology, and propose that augmentation of endogenous Prdx6 protein represents an attractive adjunct therapeutic approach for neurodegenerative diseases.


Assuntos
Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxina VI/farmacologia , Príons/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Ann Neurol ; 75(5): 684-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24687915

RESUMO

OBJECTIVE: Proteolytic cleavage of the amyloid precursor protein (APP) generates ß-amyloid (Aß) peptides. Prolonged accumulation of Aß in the brain underlies the pathogenesis of Alzheimer disease (AD) and is regarded as a principal target for development of disease-modifying therapeutics. METHODS: Using Chinese hamster ovary (CHO) APP751SW cells, we identified and characterized effects of 2-([pyridine-2-ylmethyl]-amino)-phenol (2-PMAP) on APP steady-state level and Aß production. Outcomes of 2-PMAP treatment on Aß accumulation and associated memory deficit were studied in APPSW /PS1dE9 AD transgenic model mice. RESULTS: In CHO APP751SW cells, 2-PMAP lowered the steady-state APP level and inhibited Aßx-40 and Aßx-42 production in a dose-response manner with a minimum effective concentration ≤ 0.5µM. The inhibitory effect of 2-PMAP on translational efficiency of APP mRNA into protein was directly confirmed using a 35S-methionine/cysteine metabolic labeling technique, whereas APP mRNA level remained unaltered. Administration of 2-PMAP to APPSW /PS1dE9 mice reduced brain levels of full-length APP and its C-terminal fragments and lowered levels of soluble Aßx-40 and Aßx-42 . Four-month chronic treatment of APPSW /PS1dE9 mice revealed no observable toxicity and improved animals' memory performance. 2-PMAP treatment also caused significant reduction in brain Aß deposition determined by both unbiased quantification of Aß plaque load and biochemical analysis of formic acid-extracted Aßx-40 and Aßx-42 levels and the level of oligomeric Aß. INTERPRETATION: We demonstrate the potential of modulating APP steady-state expression level as a safe and effective approach for reducing Aß deposition in AD transgenic model mice.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Regulação da Expressão Gênica , Placa Amiloide/prevenção & controle , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética
6.
Cell Metab ; 17(5): 731-44, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23602450

RESUMO

Autophagy is a catabolic process that ensures homeostatic cell clearance and is deregulated in a growing number of myopathological conditions. Although FoxO3 was shown to promote the expression of autophagy-related genes in skeletal muscle, the mechanisms triggering autophagy are unclear. We show that TSC1-deficient mice (TSCmKO), characterized by sustained activation of mTORC1, develop a late-onset myopathy related to impaired autophagy. In young TSCmKO mice, constitutive and starvation-induced autophagy is blocked at the induction steps via mTORC1-mediated inhibition of Ulk1, despite FoxO3 activation. Rapamycin is sufficient to restore autophagy in TSCmKO mice and improves the muscle phenotype of old mutant mice. Inversely, abrogation of mTORC1 signaling by depletion of raptor induces autophagy regardless of FoxO inhibition. Thus, mTORC1 is the dominant regulator of autophagy induction in skeletal muscle and ensures a tight coordination of metabolic pathways. These findings may open interesting avenues for therapeutic strategies directed toward autophagy-related muscle diseases.


Assuntos
Autofagia/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Doenças Musculares/metabolismo , Inanição/fisiopatologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
7.
Neurochem Int ; 61(7): 976-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22841892

RESUMO

Transgenic (Tg) mice overexpressing human amyloid precursor protein (APP) mutants reproduce features of early Alzheimer's disease (AD) including memory deficit, presence of ß-amyloid (Aß) oligomers, and age-associated formation of amyloid deposits. In this study we used hippocampal microdialysis to characterize the signaling of N-methyl-d-aspartic acid receptors (NMDA-Rs) in awake and behaving AD Tg mice. The NMDA-R signaling is central to hippocampal synaptic plasticity underlying memory formation and several lines of evidence implicate the role of Aß oligomers in effecting NMDA-R dysfunction. CA1 NMDA-Rs were stimulated by NMDA infused through reverse microdialysis while changes in the cyclic guanosine monophosphate (cGMP) concentration in the brain interstitial fluid (ISF) were used to determine NMDA-Rs responsiveness. While 4 months old wild type C57BL/6 mice mounted robust cGMP response to the NMDA challenge, the same stimulus failed to significantly change the cGMP level in 4 and 15 months old APP(SW) and 4 months old APP(SW)/PS1(L166P) Tg mice, which were all on C57BL/6 background. Lack of response to NMDA in AD Tg mice occurred in the absence of changes in expression levels of several synaptic proteins including synaptophysin, NR1 NMDA-R subunit and postsynaptic density protein 95, which indicates lack of profound synaptic degeneration. Aß oligomers were detected in all three AD Tg mice groups and their concentration in the hippocampus ranged from 40.5±3.6ng/g in 4 months old APP(SW) mice to 60.8±15.9ng/g in 4 months old APP(SW)/PS1(L166P) mice. Four months old APP(SW) mice had no Aß amyloid plaques, while the other two AD Tg mice groups showed evidence of incipient Aß amyloid plaque formation. Our studies describes a novel approach useful to study the function of NMDA-Rs in awake and behaving AD Tg mice and demonstrate impairment of NMDA-R response in the presence of endogenously formed Aß oligomers but predating onset of Aß amyloidosis.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Precursor de Proteína beta-Amiloide/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA