Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(3): 783-799, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38196192

RESUMO

We recently described a novel ribosome-based regulatory mechanism/checkpoint that controls innate immune gene translation and microglial activation in non-sterile inflammation orchestrated by RNA binding protein SRSF3. Here we describe a role of SRSF3 in the regulation of microglia/macrophage activation phenotypes after experimental stroke. Using a model-system for analysis of the dynamic translational state of microglial ribosomes we show that 24 h after stroke highly upregulated immune mRNAs are not translated resulting in a marked dissociation of mRNA and protein networks in activated microglia/macrophages. Next, microglial activation after stroke was characterized by a robust increase in pSRSF3/SRSF3 expression levels. Targeted knockdown of SRSF3 using intranasal delivery of siRNA 24 h after stroke caused a marked knockdown of endogenous protein. Further analyses revealed that treatment with SRSF3-siRNA alleviated translational arrest of selected genes and induced a transient but significant increase in innate immune signaling and IBA1+ immunoreactivity peaking 5 days after initial injury. Importantly, delayed SRSF3-mediated increase in immune signaling markedly reduced the size of ischemic lesion measured 7 days after stroke. Together, our findings suggest that targeting SRSF3 and immune mRNA translation may open new avenues for molecular/therapeutic reprogramming of innate immune response after ischemic injury.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Macrófagos/metabolismo , Acidente Vascular Cerebral/patologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
2.
Mol Neurobiol ; 55(5): 3611-3626, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28290152

RESUMO

Ischemic stroke triggers endogenous angiogenic mechanisms, which correlates with longer survival in patients. As such, promoting angiogenesis appears to be a promising approach. Experimental studies investigated mostly the potent angiogenic factor vascular endothelial growth factor isoform-A (VEGF-A). However, VEGF-A increases the risk of destabilizing the brain microvasculature, thus hindering the translation of its usage in clinics. An attractive alternative VEGF isoform-B (VEGF-B) was recently reported to act as a survival factor rather than a potent angiogenic factor. In this study, we investigated the therapeutic potential of VEGF-B in ischemic stroke using different in vivo and in vitro approaches. We showed that the delayed intranasal administration of VEGF-B reduced neuronal damage and inflammation. Unexpectedly, VEGF-B stimulated the formation of stable brain microvasculature within the injured region by promoting the interaction between endothelial cells and pericytes. Our data indicate that the effects of VEGF-B were mediated via its specific receptor VEGF receptor-1 (VEGFR-1) that is predominately expressed in brain pericytes. Importantly, VEGF-B promoted the survival of pericytes, and not brain endothelial cells, by inducing expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and the main protein involved in energy homeostasis AMP-activated protein kinase α (AMPKα). Moreover, we showed that VEGF-B stimulated the pericytic release of factors stimulating a "reparative angiogenesis" that does not compromise microvasculature stability. Our study unraveled hitherto unknown role of VEGF-B/VEGFR-1 signaling in regulating the function of pericytes. Furthermore, our findings suggest that brain microvasculature stabilization via VEGF-B constitutes a safe therapeutic approach for ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Pericitos/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Fator B de Crescimento do Endotélio Vascular/uso terapêutico , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Administração Intranasal , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Masculino , Camundongos , Neovascularização Patológica/metabolismo , Pericitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Fator B de Crescimento do Endotélio Vascular/farmacologia
3.
Int J Mol Sci ; 18(3)2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28245599

RESUMO

Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.


Assuntos
Microglia/imunologia , Microglia/metabolismo , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Animais , Biomarcadores , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Comunicação Celular , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA