Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Commun ; 15(1): 3182, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609352

RESUMO

Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Éxons/genética , Perfilação da Expressão Gênica , Heterozigoto , Homozigoto , Proteínas MutL , Proteínas de Neoplasias
2.
Proc Natl Acad Sci U S A ; 120(16): e2217864120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043533

RESUMO

Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.


Assuntos
Quinase 5 Dependente de Ciclina , Peptídeos , Camundongos , Animais , Humanos , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Peptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenótipo
3.
PLoS One ; 16(7): e0252048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264955

RESUMO

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.


Assuntos
Neoplasias Meníngeas/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromina 2/deficiência , Neurofibromina 2/genética , Compostos Organofosforados/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Proliferação de Células , Humanos , Mutação , Neurilemoma/patologia
4.
J Biol Chem ; 296: 100157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273014

RESUMO

Meningiomas (MNs), arising from the arachnoid/meningeal layer, are nonresponsive to chemotherapies, with ∼50% showing loss of the Neurofibromatosis 2 (NF2) tumor suppressor gene. Previously, we established NF2 loss activates mechanistic target of rapamycin complex 1 (mTORC1) and mechanistic target of rapamycin complex 2 (mTORC2) signaling, leading to clinical trials for NF2 and MN. Recently our omics studies identified activated ephrin (EPH) receptor and Src family kinases upon NF2 loss. Here, we report increased expression of several ligands in NF2-null human arachnoidal cells (ACs) and the MN cell line Ben-Men-1, particularly neuregulin-1/heregulin (NRG1), and confirm increased NRG1 secretion and activation of V-ERB-B avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3) receptor kinase. Conditioned-medium from NF2-null ACs or exogenous NRG1 stimulated ERBB3, EPHA2, and mTORC1/2 signaling, suggesting pathway crosstalk. NF2-null cells treated with an ERBB3-neutralizing antibody partially downregulated mTOR pathway activation but showed no effect on viability. mTORC1/2 inhibitor treatment decreased NRG1 expression and downregulated ERBB3 while re-activating pAkt T308, suggesting a mechanism independent of NRG1-ERBB3 but likely involving activation of another upstream receptor kinase. Transcriptomics after mTORC1/2 inhibition confirmed decreased ERBB3/ERBB4 while revealing increased expression of insulin-like growth factor receptor 1 (IGF1R). Drug treatment co-targeting mTORC1/2 and IGF1R/insulin receptor attenuated pAkt T308 and showed synergistic effects on viability. Our findings indicate potential autocrine signaling where NF2 loss leads to secretion/activation of NRG1-ERBB3 signaling. mTORC1/2 inhibition downregulates NRG1-ERBB3, while upregulating pAkt T308 through an adaptive response involving IGF1R/insulin receptor and co-targeting these pathways may prove effective for treatment of NF2-deficient MN.


Assuntos
Comunicação Autócrina/genética , Neuregulina-1/genética , Neurofibromina 2/genética , Receptor ErbB-3/genética , Receptor IGF Tipo 1/genética , Serina-Treonina Quinases TOR/genética , Anticorpos Monoclonais Humanizados/farmacologia , Benzamidas/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Lapatinib/farmacologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Morfolinas/farmacologia , Neuregulina-1/antagonistas & inibidores , Neuregulina-1/metabolismo , Neurofibromina 2/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Triazinas/farmacologia
5.
Hum Mol Genet ; 29(18): 3044-3053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32876667

RESUMO

Recent genome-wide association studies of age-at-onset in Huntington's disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Assuntos
Proteínas de Ciclo Celular/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Ribonucleotídeo Redutases/genética , Idade de Início , Animais , Modelos Animais de Doenças , Genes Modificadores/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
6.
Hum Genet ; 139(4): 499-512, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31980904

RESUMO

CHD8, which encodes Chromodomain helicase DNA-binding protein 8, is one of a few well-established Autism Spectrum Disorder (ASD) genes. Over 60 mutations have been reported in subjects with variable phenotypes, but little is known concerning genotype-phenotype correlations. We have identified four novel de novo mutations in Chinese subjects: two nonsense variants (c.3562C>T/p.Arg1188X, c.2065C>A/p.Glu689X), a splice site variant (c.4818-1G>A) and a missense variant (c.3502T>A/p.Tyr1168Asn). Three of these were identified from a 445-member ASD cohort by ASD gene panel sequencing of the 96 subjects who remained negative after molecular testing for copy number variation, Rett syndrome, FragileX and tuberous sclerosis complex (TSC). The fourth (p.Glu689X) was detected separately by diagnostic trio exome sequencing. We used diagnostic instruments and a comprehensive review of phenotypes, including prenatal and postnatal growth parameters, developmental milestones, and dysmorphic features to compare these four subjects. In addition to autism, they also presented with prenatal onset macrocephaly, intellectual disability, overgrowth during puberty, sleep disorder, and dysmorphic features, including broad forehead with prominent supraorbital ridges, flat nasal bridge, telecanthus and large ears. For further comparison, we compiled a comprehensive list of CHD8 variants from the literature and databases, which revealed constitutive and somatic truncating variants in the HELIC (Helicase-C) domain in ASD and in cancer patients, respectively, but not in the general population. Furthermore, HELIC domain mutations were associated with a severe phenotype defined by a greater number of clinical features, lower verbal IQ, and a prominent, consistent pattern of overgrowth as measured by weight, height and head circumference. Overall, this study adds to the ASD-associated loss-of-function mutations in CHD8 and highlights the clinical importance of the HELIC domain of CHD8.


Assuntos
Transtorno do Espectro Autista/genética , Códon sem Sentido , Proteínas de Ligação a DNA/genética , Síndrome do Cromossomo X Frágil/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mutação de Sentido Incorreto , Fenótipo , Síndrome de Rett/genética , Fatores de Transcrição/genética , Esclerose Tuberosa/genética , Transtorno do Espectro Autista/enzimologia , Criança , Feminino , Síndrome do Cromossomo X Frágil/enzimologia , Humanos , Transtornos do Desenvolvimento da Linguagem/enzimologia , Masculino , Domínios Proteicos , Síndrome de Rett/enzimologia , Esclerose Tuberosa/enzimologia
7.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628846

RESUMO

CONTEXT: Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. OBJECTIVE: Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. DESIGN: Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. SETTING: The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. PATIENT: A KS patient with a unique translocation, t(7;12)(q22;q24). INTERVENTIONS/MAIN OUTCOME MEASURE/RESULTS: A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. CONCLUSIONS: A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Síndrome de Kallmann/patologia , RNA Longo não Codificante/genética , Translocação Genética , Adulto , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 7/genética , Estudo de Associação Genômica Ampla , Hormônio Liberador de Gonadotropina/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Crista Neural/metabolismo , Crista Neural/patologia , Prognóstico
8.
Mol Genet Genomic Med ; 7(11): e923, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31503426

RESUMO

BACKGROUND: Pediatric myelodysplastic syndromes (MDS) display clonal genomic instability that can lead to acquisition of other hematological disorders, usually by loss of heterozygosity. Immunodeficiency caused by uniparental disomy (UPD) has not previously been reported. METHODS: We investigated a 13-year-old boy who suffered from recurrent infections and pancytopenia for 1 year. Both the comet assay and chromosome breakage analysis were normal, but the bone marrow showed evidence of dysplasia characteristic of MDS. With his normal sister as donor, he underwent failed hematopoietic stem cell transplantation (HSCT) with reduced intensity conditioning (RIC) followed by successful HSCT with myeloablative conditioning (MAC). We used single nucleotide polymorphism (SNP) array, targeted gene panel, and whole exome sequencing to investigate the etiology of his disease. RESULTS: The molecular analyses revealed multiple regions of homozygosity, one region encompassing a homozygous missense variant of recombination activating gene 1 (RAG1) which was previously associated with severe immunodeficiency in infancy. This RAG1 mutation was heterozygous in the proband's fingernail DNA, but was changed to homozygous in the proband's marrow by somatic acquisition of UPD event. No other pathogenic driver mutation for MDS-related genes was identified. CONCLUSION: The hematological phenotype, somatic genomic instability, and response to HSCT MAC but not HSCT RIC deduced to a diagnosis of MDS type refractory cytopenia of children in this patient. His immunodeficiency was secondary to MDS due to somatic acquisition of homozygosity for known pathogenic RAG1 mutation.


Assuntos
Síndrome da Imunodeficiência Adquirida/patologia , Mutação , Síndromes Mielodisplásicas/patologia , Dissomia Uniparental/fisiopatologia , Síndrome da Imunodeficiência Adquirida/etiologia , Síndrome da Imunodeficiência Adquirida/terapia , Adolescente , Transplante de Células-Tronco Hematopoéticas , Proteínas de Homeodomínio/genética , Humanos , Masculino , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/terapia , Prognóstico
9.
Cell Rep ; 24(2): 463-478.e5, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996106

RESUMO

Most human cancers arise from stem and progenitor cells by the sequential accumulation of genetic and epigenetic alterations, while cancer modeling typically requires simultaneous multiple oncogenic events. Here, we show that a single p53 mutation, despite causing no defect in the mouse brain, promoted neural stem and progenitor cells to spontaneously accumulate oncogenic alterations, including loss of multiple chromosomal (chr) regions syntenic to human chr10 containing Pten, forming malignant gliomas with PI3K/Akt activation. Rictor/mTORC2 loss inhibited Akt signaling, greatly delaying and reducing glioma formation by suppressing glioma precursors within the subventricular zone stem cell niche. Rictor/mTORC2 loss delayed timely differentiation of granule cell precursors (GCPs) during cerebellar development, promoting sustained GCP proliferation and medulloblastoma formation, which recapitulated critical features of TP53 mutant sonic hedgehog (SHH) medulloblastomas with GLI2 and/or N-MYC amplification. Our study demonstrates that Rictor/mTORC2 has opposing functions in neural stem cells and GCPs in the adult and the developing brain, promoting malignant gliomas and suppressing SHH-medulloblastoma formation, respectively.


Assuntos
Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Meduloblastoma/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Transdução de Sinais , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Proliferação de Células , Criança , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Mutação/genética , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
10.
Neuro Oncol ; 20(9): 1185-1196, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29982664

RESUMO

Background: Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed. Our earlier work established mammalian target of rapamycin complex mTORC1/mTORC2 activation in NF2-deficient meningiomas. Methods: High-throughput kinome analyses were performed in NF2-null human arachnoidal and meningioma cell lines to identify functional kinome changes upon NF2 loss. Immunoblotting confirmed the activation of kinases and demonstrated effectiveness of drugs to block the activation. Drugs, singly and in combination, were screened in cells for their growth inhibitory activity. Antitumor drug efficacy was tested in an orthotopic meningioma model. Results: Erythropoietin-producing hepatocellular receptor tyrosine kinases (EPH RTKs), c-KIT, and Src family kinase (SFK) members, which are biological targets of dasatinib, were among the top candidates activated in NF2-null cells. Dasatinib significantly inhibited phospho-EPH receptor A2 (pEPHA2), pEPHB1, c-KIT, and Src/SFK in NF2-null cells, showing no cross-talk with mTORC1/2 signaling. Posttreatment kinome analyses showed minimal adaptive changes. While dasatinib treatment showed some activity, dual mTORC1/2 inhibitor and its combination with dasatinib elicited stronger growth inhibition in meningiomas. Conclusion: Co-targeting mTORC1/2 and EPH RTK/SFK pathways could be a novel effective treatment strategy for NF2-deficient meningiomas.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Neurofibromina 2/deficiência , Receptores da Família Eph/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/metabolismo , Meningioma/tratamento farmacológico , Meningioma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS One ; 13(6): e0197350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897904

RESUMO

Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene. We tested priority compounds based on known biology with traditional dose-concentration studies in meningioma and schwann cell systems. Concurrently, we studied functional kinome and gene expression in these cells pre- and post-treatment to determine merlin deficient molecular phenotypes. Cell viability results showed that three agents (GSK2126458, Panobinostat, CUDC-907) had the greatest activity across schwannoma and meningioma cell systems, but merlin status did not significantly influence response. In vivo, drug effect was tumor specific with meningioma, but not schwannoma, showing response to GSK2126458 and Panobinostat. In culture, changes in both the transcriptome and kinome in response to treatment clustered predominantly based on tumor type. However, there were differences in both gene expression and functional kinome at baseline between meningioma and schwannoma cell systems that may form the basis for future selective therapies. This work has created an openly accessible resource (www.synapse.org/SynodosNF2) of fully characterized isogenic schwannoma and meningioma cell systems as well as a rich data source of kinome and transcriptome data from these assay systems before and after treatment that enables single and combination drug discovery based on molecular phenotype.


Assuntos
Neoplasias Meníngeas/genética , Neurilemoma/genética , Neurofibromatose 2/genética , Neurofibromina 2/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/patologia , Camundongos , Morfolinas/farmacologia , Neurilemoma/tratamento farmacológico , Neurilemoma/patologia , Neurofibromatose 2/tratamento farmacológico , Neurofibromatose 2/patologia , Panobinostat/farmacologia , Piridazinas , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Biologia de Sistemas , Transcriptoma/genética
12.
Medicine (Baltimore) ; 97(5): e9717, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29384852

RESUMO

Schwannomatosis has been linked to germline mutations in the SMARCB1 and LZTR1 genes, and is frequently associated with pain.In a cohort study, we assessed the mutation status of 37 patients with clinically diagnosed schwannomatosis and compared to clinical data, whole body MRI (WBMRI), visual analog pain scale, and Short Form 36 (SF-36) bodily pain subscale.We identified a germline mutation in LZTR1 in 5 patients (13.5%) and SMARCB1 in 15 patients (40.5%), but found no germline mutation in 17 patients (45.9%). Peripheral schwannomas were detected in 3 LZTR1-mutant (60%) and 10 SMARCB1-mutant subjects (66.7%). Among those with peripheral tumors, the median tumor number was 4 in the LZTR1 group (median total body tumor volume 30 cc) and 10 in the SMARCB1 group (median volume 85cc), (P=.2915 for tumor number and P = .2289 for volume). mutation was associated with an increased prevalence of spinal schwannomas (100% vs 41%, P = .0197). The median pain score was 3.9/10 in the LZTR1 group and 0.5/10 in the SMARCB1 group (P = .0414), and SF-36 pain-associated quality of life was significantly worse in the LZTR1 group (P = .0106). Pain scores correlated with total body tumor volume (rho = 0.32471, P = .0499), but not with number of tumors (rho = 0.23065, P = .1696).We found no significant difference in quantitative tumor burden between mutational groups, but spinal schwannomas were more common in LZTR1-mutant patients. Pain was significantly higher in LZTR1-mutant than in SMARCB1-mutant patients, though spinal tumor location did not significantly correlate with pain. This suggests a possible genetic association with schwannomatosis-associated pain.


Assuntos
Dor do Câncer/genética , Mutação em Linhagem Germinativa , Neurilemoma/genética , Neurofibromatoses/genética , Neoplasias Cutâneas/genética , Adulto , Dor do Câncer/diagnóstico por imagem , Dor do Câncer/fisiopatologia , Estudos de Coortes , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neurilemoma/diagnóstico por imagem , Neurilemoma/fisiopatologia , Neurofibromatoses/diagnóstico por imagem , Neurofibromatoses/fisiopatologia , Medição da Dor , Qualidade de Vida , Proteína SMARCB1/genética , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/fisiopatologia , Fatores de Transcrição/genética , Carga Tumoral , Imagem Corporal Total
13.
Hum Mol Genet ; 26(19): 3859-3867, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934397

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets.


Assuntos
Proteína Huntingtina/genética , Proteína 1 Homóloga a MutL/genética , Alelos , Animais , Cromossomos Humanos Par 15 , Cromossomos Humanos Par 8 , Modelos Animais de Doenças , Genes Modificadores/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Proteína 1 Homóloga a MutL/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Repetições de Trinucleotídeos
14.
J Neurosci ; 37(41): 9917-9924, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28912154

RESUMO

Increased p25, a proteolytic fragment of the regulatory subunit p35, is known to induce aberrant activity of cyclin-dependent kinase 5 (Cdk5), which is associated with neurodegenerative disorders, including Alzheimer's disease. Previously, we showed that replacing endogenous p35 with the noncleavable mutant p35 (Δp35) attenuated amyloidosis and improved cognitive function in a familial Alzheimer's disease mouse model. Here, to address the role of p25/Cdk5 in tauopathy, we generated double-transgenic mice by crossing mice overexpressing mutant human tau (P301S) with Δp35KI mice. We observed significant reduction of phosphorylated tau and its seeding activity in the brain of double transgenic mice compared with the P301S mice. Furthermore, synaptic loss and impaired LTP at hippocampal CA3 region of P301S mice were attenuated by blocking p25 generation. To further validate the role of p25/Cdk5 in tauopathy, we used frontotemporal dementia patient-derived induced pluripotent stem cells (iPSCs) carrying the Tau P301L mutation and generated P301L:Δp35KI isogenic iPSC lines using CRISPR/Cas9 genome editing. We created cerebral organoids from the isogenic iPSCs and found that blockade of p25 generation reduced levels of phosphorylated tau and increased expression of synaptophysin. Together, these data demonstrate a crucial role for p25/Cdk5 in mediating tau-associated pathology and suggest that inhibition of this kinase can remedy neurodegenerative processes in the presence of pathogenic tau mutation.SIGNIFICANCE STATEMENT Accumulation of p25 results in aberrant Cdk5 activation and induction of numerous pathological phenotypes, such as neuroinflammation, synaptic loss, Aß accumulation, and tau hyperphosphorylation. However, it was not clear whether p25/Cdk5 activity is necessary for the progression of these pathological changes. We recently developed the Δp35KI transgenic mouse that is deficient in p25 generation and Cdk5 hyperactivation. In this study, we used this mouse model to elucidate the role of p25/Cdk5 in FTD mutant tau-mediated pathology. We also used a frontotemporal dementia patient-derived induced pluripotent stem cell carrying the Tau P301L mutation and generated isogenic lines in which p35 is replaced with noncleavable mutant Δp35. Our data suggest that p25/Cdk5 plays an important role in tauopathy in both mouse and human model systems.


Assuntos
Quinase 5 Dependente de Ciclina/genética , Demência Frontotemporal/genética , Fosfotransferases/genética , Células-Tronco Pluripotentes , Tauopatias/genética , Animais , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Demência Frontotemporal/prevenção & controle , Humanos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/patologia , Fosforilação , Fosfotransferases/antagonistas & inibidores , Transplante de Células-Tronco , Sinapses/patologia , Sinaptofisina/genética , Tauopatias/prevenção & controle
15.
Hum Mutat ; 38(4): 378-389, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27925688

RESUMO

Increasing evidence that mutation of planar cell polarity (PCP) genes contributes to human cranial neural tube defect (NTD) susceptibility prompted us to hypothesize that rare variants of genes in the core apical-basal polarity (ABP) pathway are risk factors for cranial NTDs. In this study, we screened for rare genomic variation of PARD3 in 138 cranial NTD cases and 274 controls. Overall, the rare deleterious variants of PARD3 were significantly associated with increased risk for cranial NTDs (11/138 vs.7/274, P < 0.05, OR = 3.3). These NTD-specific variants were significantly enriched in the aPKC-binding region (6/138 vs. 0/274, P < 0.01). The East Asian cohort in the ExAC database and another Chinese normal cohort further supported this association. Over-expression analysis in HEK293T and MDCK cells confirmed abnormal aPKC binding or interaction for two PARD3 variants (p.P913Q and p.D783G), resulting in defective tight junction formation via disrupted aPKC binding. Functional analysis in human neural progenitor cells and chick embryos revealed that PARD3 knockdown gave rise to abnormal cell polarity and compromised the polarization process of neuroepithelial tissue. Our studies suggest that rare deleterious variants of PARD3 in the aPKC-binding region contribute to human cranial NTDs, possibly by disrupting apical tight junction formation and subsequent polarization process of the neuroepithelium.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Membrana/genética , Mutação , Defeitos do Tubo Neural/genética , Proteína Quinase C/metabolismo , Junções Íntimas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Povo Asiático/genética , Padronização Corporal/genética , Proteínas de Ciclo Celular/metabolismo , Embrião de Galinha , China , Estudos de Coortes , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Defeitos do Tubo Neural/etnologia , Defeitos do Tubo Neural/metabolismo , Ligação Proteica , Interferência de RNA , Junções Íntimas/patologia
16.
Eur J Hum Genet ; 24(11): 1622-1626, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381092

RESUMO

Analysis of chromosomal rearrangements has been highly successful in identifying genes involved in many congenital abnormalities including hearing loss. Herein, we report a subject, designated DGAP242, with congenital hearing loss (HL) and a de novo balanced translocation 46,XX,t(1;5)(q32;q15)dn. Using multiple next-generation sequencing techniques, we obtained high resolution of the breakpoints. This revealed disruption of the orphan receptor ESRRG on chromosome 1, which is differentially expressed in inner ear hair cells and has previously been implicated in HL, and disruption of KIAA0825 on chromosome 5. Given the translocation breakpoints and supporting literature, disruption of ESRRG is the most likely cause for DGAP242's phenotype and implicates ESRRG in a monogenic form of congenital HL, although a putative contributory role for KIAA0825 in the subject's disorder cannot be excluded.


Assuntos
Deficiências do Desenvolvimento/genética , Perda Auditiva/genética , Fenótipo , Receptores de Estrogênio/genética , Adulto , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 5/genética , Deficiências do Desenvolvimento/diagnóstico , Feminino , Perda Auditiva/diagnóstico , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Síndrome , Translocação Genética
17.
Brain ; 139(Pt 6): 1666-72, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190017

RESUMO

Mutations in the colony stimulating factor 1 receptor (CSF1R) have recently been discovered as causal for hereditary diffuse leukoencephalopathy with axonal spheroids. We identified a novel, heterozygous missense mutation in CSF1R [c.1990G > A p.(E664K)] by exome sequencing in five members of a family with hereditary diffuse leukoencephalopathy with axonal spheroids. Three affected siblings had characteristic white matter abnormalities and presented with progressive neurological decline. In the fourth affected sibling, early progression halted after allogeneic haematopoietic stem cell transplantation from a related donor. Blood spot DNA from this subject displayed chimerism in CSF1R acquired after haematopoietic stem cell transplantation. Interestingly, both parents were unaffected but the mother's blood and saliva were mosaic for the CSF1R mutation. Our findings suggest that expression of wild-type CSF1R in some cells, whether achieved by mosaicism or chimerism, may confer benefit in hereditary diffuse leukoencephalopathy with axonal spheroids and suggest that haematopoietic stem cell transplantation might have a therapeutic role for this disorder.


Assuntos
Leucoencefalopatias/genética , Mosaicismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Adulto , Idoso de 80 Anos ou mais , Quimerismo , Feminino , Predisposição Genética para Doença/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucoencefalopatias/cirurgia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
18.
PLoS One ; 10(10): e0140192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445504

RESUMO

The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2) tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.


Assuntos
Implantação do Embrião , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Complexo Mediador/metabolismo , Animais , Diferenciação Celular , Reprogramação Celular , Perda do Embrião/genética , Perda do Embrião/metabolismo , Deleção de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
J Clin Endocrinol Metab ; 100(10): E1378-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26207952

RESUMO

CONTEXT: Loss of function (LoF) mutations in more than 20 genes are now known to cause isolated GnRH deficiency (IGD) in humans. Most causal IGD mutations are typically private, ie, limited to a single individual/pedigree. However, somewhat paradoxically, four IGD genes (GNRH1, TAC3, PROKR2, and GNRHR) have been shown to harbor LoF founder mutations that are shared by multiple unrelated individuals. It is not known whether similar founder mutations occur in other IGD genes. OBJECTIVE: The objective of the study was to determine whether shared deleterious mutations in IGD-associated genes represent founder alleles. SETTING: This study was an international collaboration among academic medical centers. METHODS: IGD patients with shared mutations, defined as those documented in three or more unrelated probands in 14 IGD-associated genes, were identified from various academic institutions, the Human Gene Mutation Database, and literature reports by other international investigators. Haplotypes of single-nucleotide polymorphisms and short tandem repeats surrounding the mutations were constructed to assess genetic ancestry. RESULTS: A total of eight founder mutations in five genes, GNRHR (Q106R, R262Q, R139H), TACR3 (W275X), PROKR2 (R85H), FGFR1 (R250Q, G687R), and HS6ST1 (R382W) were identified. Most founder alleles were present at low frequency in the general population. The estimated age of these mutant alleles ranged from 1925 to 5600 years and corresponded to the time of rapid human population expansion. CONCLUSIONS: We have expanded the spectrum of founder alleles associated with IGD to a total of eight founder mutations. In contrast to the approximately 9000-year-old PROKR2 founder allele that may confer a heterozygote advantage, the rest of the founder alleles are relatively more recent in origin, in keeping with the timing of recent human population expansion and any selective heterozygote advantage of these alleles requires further evaluation.


Assuntos
Hormônio Liberador de Gonadotropina/deficiência , Hormônio Liberador de Gonadotropina/genética , Doenças Hipotalâmicas/genética , Mutação , Neurocinina B/genética , Receptores Acoplados a Proteínas G/genética , Receptores LHRH/genética , Receptores de Peptídeos/genética , Alelos , Haplótipos , Humanos , Linhagem
20.
Oncotarget ; 6(19): 16981-97, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26219339

RESUMO

Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Neoplasias Meníngeas/enzimologia , Meningioma/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Immunoblotting , Neoplasias Meníngeas/genética , Meningioma/genética , Morfolinas/farmacologia , Neurofibromatose 2/genética , Reação em Cadeia da Polimerase , Pirimidinas , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA