RESUMO
Epileptic seizures negatively affect cognition. However, the mechanisms that contribute to cognitive impairments after seizures are largely unknown. Here, we examined the effects of long-term kindling (i.e., 99 stimulations) of limbic (basolateral amygdala, dorsal hippocampus) and non-limbic (caudate nucleus) brain sites on conditioned fear and hippocampal plasticity. We first showed that kindling had no effect on acquisition of a hippocampal-dependent trace fear-conditioning task but limbic kindling impaired the retrieval of these fear memories. To determine the relationship between memory and hippocampal neuronal activity, we examined the expression of Fos protein 90 min after memory retrieval (i.e., 4 days after the last kindling stimulation). We found that limbic kindling, but not non-limbic kindling, decreased Fos expression in the granule cell layer, hilus, CA3 pyramidal cell layer, and CA1 pyramidal cell layer. Next, to investigate a mechanism that could contribute to dampen hippocampal neuronal activity in limbic-kindled rats, we focused on the endogenous anticonvulsant neuropeptide Y (NPY), which is expressed in a subset of GABAergic interneurons and can prevent glutamate release through interactions with its Y2 receptor. We found that limbic kindling significantly decreased the number of NPY-immunoreactive cells in several hippocampal subfields despite minimal staining of the neurodegenerative marker Fluoro-Jade B. However, we also noted that limbic kindling enhanced NPY immunoreactivity throughout the mossy fiber pathway. In these same regions, we observed limbic kindling-induced de novo expression of the NPY Y2 receptor. These novel findings demonstrate the site-specific effects of kindling on cognition and NPY plasticity, and they provide evidence that altered hippocampal NPY after limbic seizures coincides with dampened neural activity and cognitive impairments.
Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Núcleo Caudado/fisiopatologia , Medo/fisiologia , Hipocampo/fisiopatologia , Excitação Neurológica , Plasticidade Neuronal , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Núcleo Caudado/metabolismo , Hipocampo/metabolismo , Masculino , Rememoração Mental/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-EvansRESUMO
Amygdala kindling is well known to increase unconditioned fear and anxiety. However, relatively little is known about whether this form of kindling causes functional changes within the neural circuitry that mediates fear learning and the retrieval of fear memories. To address this issue, we examined the effect of short- (i.e., 30 stimulations) and long-term (i.e., 99 stimulations) amygdala kindling in rats on trace and delay fear conditioning, which are aversive learning tasks that rely predominantly on the hippocampus and amygdala, respectively. After memory retrieval, we analyzed the pattern of neural activity with Fos, the protein product of the immediate early gene c-fos. We found that kindling had no effect on acquisition of the trace fear conditioning task but it did selectively impair retrieval of this fear memory. In contrast, kindling disrupted both acquisition and retrieval of fear memory in the delay fear conditioning task. We also found that kindling-induced impairments in memory retrieval were accompanied by decreased Fos expression in several subregions of the hippocampus, parahippocampus, and amygdala. Interestingly, decreased freezing in the trace conditioning task was significantly correlated with dampened Fos expression in hippocampal and parahippocampal regions whereas decreased freezing in the delay conditioning task was significantly correlated with dampened Fos expression in hippocampal, parahippocampal, and amygdaloid circuits. Overall, these results suggest that amygdala kindling promotes functional changes in brain regions involved in specific types of fear learning and memory.