Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Arch Toxicol ; 94(1): 205-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919559

RESUMO

Inflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl4 (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC). Spatiotemporal investigation differentiated lobular zones for signaling and transcription factor expression. Acute CCl4 intoxication induced expression of gene clusters enriched for inflammation and stress signaling that peaked between 2 and 24 h, accompanied by a decrease of mature liver functions, particularly metabolic genes. Metabolism decreased not only in pericentral hepatocytes that underwent CCl4-induced necrosis, but extended to the surviving periportal hepatocytes. Proliferation and tissue restorative TRNs occurred only later reaching a maximum at 48 h. The same upstream regulators (e.g. inhibited RXR function) were implicated in increased inflammation and suppressed metabolism. The concomitant inflammation/metabolism TRN occurred similarly after acute LPS and tunicamycin challenges, in chronic mouse models and also in human liver diseases. Downregulation of metabolic genes occurs concomitantly to induce inflammation-associated genes as an early response and appears to be initiated by similar upstream regulators in acute and chronic liver diseases in humans and mice. In the acute setting, proliferation and restorative regeneration associated TRNs peak only later when metabolism is already suppressed.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Redes Reguladoras de Genes , Hepatite Crônica/genética , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite Crônica/fisiopatologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
Cells ; 8(10)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635436

RESUMO

Given the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of RUNX1 in NASH. The gene expression of RUNX1 was correlated with histopathological attributes of patients. The protein expression of RUNX1 in liver was studied by immunohistochemistry. To explore the underlying mechanisms, in vitro studies using RUNX1 siRNA and overexpression plasmids were performed in endothelial cells (ECs). RUNX1 expression was significantly correlated with inflammation, fibrosis and NASH activity score in NASH patients. Its expression was conspicuous in liver non-parenchymal cells. In vitro, factors from steatotic hepatocytes and/or VEGF or TGF- significantly induced the expression of RUNX1 in ECs. RUNX1 regulated the expression of angiogenic and adhesion molecules in ECs, including CCL2, PECAM1 and VCAM1, which was shown by silencing or over-expression of RUNX1. Furthermore, RUNX1 increased the angiogenic activity of ECs. This study reports that steatosis-induced RUNX1 augmented the expression of adhesion and angiogenic molecules and properties in ECs and may be involved in enhancing inflammation and disease severity in NASH.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Camundongos , Ácido Palmítico/farmacologia
3.
Nat Commun ; 10(1): 2459, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31150008

RESUMO

The original version of this Article contained an error in the spelling of the author Jule Müller, which was incorrectly given as Julia Müller. Additionally, in Fig. 4a, the blue-red colour scale for fold change in ageing/disease regulation included a blue stripe in place of a red stripe at the right-hand end of the scale. These errors have been corrected in both the PDF and HTML versions of the Article.

4.
J Hepatol ; 70(6): 1192-1202, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30711403

RESUMO

BACKGROUND & AIMS: The mammalian circadian clock controls various aspects of liver metabolism and integrates nutritional signals. Recently, we described Hedgehog (Hh) signaling as a novel regulator of liver lipid metabolism. Herein, we investigated crosstalk between hepatic Hh signaling and circadian rhythm. METHODS: Diurnal rhythms of Hh signaling were investigated in liver and hepatocytes from mice with ablation of Smoothened (SAC-KO) and crossbreeds with PER2::LUC reporter mice. By using genome-wide screening, qPCR, immunostaining, ELISA and RNAi experiments in vitro we identified relevant transcriptional regulatory steps. Shotgun lipidomics and metabolic cages were used for analysis of metabolic alterations and behavior. RESULTS: Hh signaling showed diurnal oscillations in liver and hepatocytes in vitro. Correspondingly, the level of Indian Hh, oscillated in serum. Depletion of the clock gene Bmal1 in hepatocytes resulted in significant alterations in the expression of Hh genes. Conversely, SAC-KO mice showed altered expression of clock genes, confirmed by RNAi against Gli1 and Gli3. Genome-wide screening revealed that SAC-KO hepatocytes showed time-dependent alterations in various genes, particularly those associated with lipid metabolism. The clock/hedgehog module further plays a role in rhythmicity of steatosis, and in the response of the liver to a high-fat diet or to differently timed starvation. CONCLUSIONS: For the first time, Hh signaling in hepatocytes was found to be time-of-day dependent and to feed back on the circadian clock. Our findings suggest an integrative role of Hh signaling, mediated mainly by GLI factors, in maintaining homeostasis of hepatic lipid metabolism by balancing the circadian clock. LAY SUMMARY: The results of our investigation show for the first time that the Hh signaling in hepatocytes is time-of-day dependent, leading to differences not only in transcript levels but also in the amount of Hh ligands in peripheral blood. Conversely, Hh signaling is able to feed back to the circadian clock.


Assuntos
Relógios Circadianos/fisiologia , Fígado Gorduroso/etiologia , Proteínas Hedgehog/fisiologia , Animais , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais/fisiologia , Receptor Smoothened/fisiologia , Proteína GLI1 em Dedos de Zinco/fisiologia , Proteína Gli3 com Dedos de Zinco/fisiologia
5.
Mol Cell Proteomics ; 17(6): 1084-1096, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507050

RESUMO

Invasive infections by the human pathogenic fungus Aspergillus fumigatus start with the outgrowth of asexual, airborne spores (conidia) into the lung tissue of immunocompromised patients. The resident alveolar macrophages phagocytose conidia, which end up in phagolysosomes. However, A. fumigatus conidia resist phagocytic degradation to a certain degree. This is mainly attributable to the pigment 1,8-dihydroxynaphthalene (DHN) melanin located in the cell wall of conidia, which manipulates the phagolysosomal maturation and prevents their intracellular killing. To get insight in the underlying molecular mechanisms, we comparatively analyzed proteins of mouse macrophage phagolysosomes containing melanized wild-type (wt) or nonmelanized pksP mutant conidia. For this purpose, a protocol to isolate conidia-containing phagolysosomes was established and a reference protein map of phagolysosomes was generated. We identified 637 host and 22 A. fumigatus proteins that were differentially abundant in the phagolysosome. 472 of the host proteins were overrepresented in the pksP mutant and 165 in the wt conidia-containing phagolysosome. Eight of the fungal proteins were produced only in pksP mutant and 14 proteins in wt conidia-containing phagolysosomes. Bioinformatical analysis compiled a regulatory module, which indicates host processes affected by the fungus. These processes include vATPase-driven phagolysosomal acidification, Rab5 and Vamp8-dependent endocytic trafficking, signaling pathways, as well as recruitment of the Lamp1 phagolysosomal maturation marker and the lysosomal cysteine protease cathepsin Z. Western blotting and immunofluorescence analyses confirmed the proteome data and moreover showed differential abundance of the major metabolic regulator mTOR. Taken together, with the help of a protocol optimized to isolate A. fumigatus conidia-containing phagolysosomes and a potent bioinformatics algorithm, we were able to confirm A. fumigatus conidia-dependent modification of phagolysosomal processes that have been described before and beyond that, identify pathways that have not been implicated in A. fumigatus evasion strategy, yet.Mass spectrometry proteomics data are available via ProteomeXchange with identifiers PXD005724 and PXD006134.


Assuntos
Aspergillus fumigatus/fisiologia , Proteínas Fúngicas/metabolismo , Evasão da Resposta Imune , Fagossomos/metabolismo , Esporos Fúngicos/metabolismo , Animais , Camundongos , Proteômica , Células RAW 264.7
6.
Nat Commun ; 9(1): 327, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382830

RESUMO

Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/genética , Diabetes Mellitus/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Criança , Pré-Escolar , Doença Crônica , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Fundulidae/genética , Fundulidae/crescimento & desenvolvimento , Fundulidae/metabolismo , Ontologia Genética , Genoma Humano , Humanos , Lactente , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/patologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
7.
Mucosal Immunol ; 11(3): 627-642, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297499

RESUMO

Protein secretion upon TLR, TNFR1, and IFNGR ligation in the human airways is considered to be central for the orchestration of pulmonary inflammatory and immune responses. In this study, we compared the gene expression and protein secretion profiles in response to specific stimulation of all expressed TLRs and in further comparison to TNFR1 and IFNGR in primary human airway epithelial cells. In addition to 22 cytokines, we observed the receptor-induced regulation of 571 genes and 1,012 secreted proteins. Further analysis revealed high similarities between the transcriptional TLR sensor and TNFR1 effector responses. However, secretome to transcriptome comparisons showed a broad receptor stimulation-dependent release of proteins that were not transcriptionally regulated. Many of these proteins are annotated to exosomes with associations to, for example, antigen presentation and wound-healing, or were identified as secretable proteins related to immune responses. Thus, we show a hitherto unrecognized scope of receptor-induced responses in airway epithelium, involving several additional functions for the immune response, exosomal communication and tissue homeostasis.


Assuntos
Exossomos/metabolismo , Mucosa Respiratória/fisiologia , Sistema Respiratório/citologia , Apresentação de Antígeno , Secreções Corporais/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Homeostase , Humanos , Imunidade , Cultura Primária de Células , Receptores de Interferon/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Via Secretória , Receptores Toll-Like/metabolismo , Transcriptoma , Cicatrização , Receptor de Interferon gama
8.
Metabolomics ; 14(4): 41, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830340

RESUMO

INTRODUCTION: Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing. OBJECTIVE: To introduce a software tool for the identification of isotopologues from mass spectrometry data. METHODS: DeltaMS relies on XCMS peak detection and X13CMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios. It provides pipelines for recognition of isotope patterns in three experiment types commonly used in isotopic labeling studies: (1) search for isotope signatures with a specific mass shift and intensity ratio in one sample set, (2) analyze two sample sets for a specific mass shift and, optionally, the isotope ratio, whereby one sample set is isotope-labeled, and one is not, (3) analyze isotope-guided perturbation experiments with a setup described in X13CMS. RESULTS: To illustrate the versatility of DeltaMS, we analyze data sets from case-studies that commonly pose challenges in evaluation of natural isotopes or isotopic signatures in labeling experiment. In these examples, the untargeted detection of sulfur, bromine and artificial metal isotopic patterns is enabled by the automated search for specific isotopes or isotope signatures. CONCLUSION: DeltaMS provides a platform for the identification of (pre-defined) isotopologues in MS data from single samples or comparative metabolomics data sets.


Assuntos
Marcação por Isótopo , Laccaria/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Metabolômica , Cromatografia Gasosa , Cromatografia Líquida , Humanos , Células K562 , Laccaria/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Espectrometria de Massas
9.
Sci Rep ; 7(1): 838, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404994

RESUMO

Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.


Assuntos
Glicoproteínas/genética , Lipopolissacarídeos/toxicidade , Monócitos/imunologia , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Ácidos Decanoicos/farmacologia , Glicoproteínas/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Proteoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Fator de Necrose Tumoral alfa/genética
10.
Biol Res ; 49(1): 34, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464526

RESUMO

BACKGROUND: Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. RESULTS: Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, "Cell cycle" was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, "DNA repair" and "replication" pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. CONCLUSION: We found the pathways associated with "DNA repair" and "replication" less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction.


Assuntos
Senescência Celular/fisiologia , Fibroblastos/efeitos da radiação , Feto Abortado , Análise de Variância , Células Cultivadas , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Fibroblastos/fisiologia , Raios gama , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Pulmão , Masculino , Análise de Sequência de RNA , Fatores de Tempo , Regulação para Cima/efeitos da radiação , beta-Galactosidase/metabolismo
11.
Front Microbiol ; 7: 320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047454

RESUMO

Invasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy toward this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of hematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover, we validated the expression of S100B in a real-time reverse transcription polymerase chain reaction (RT-PCR) assay and we also found a down-regulation of S100B in A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis.

12.
J Proteome Res ; 15(5): 1580-91, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974881

RESUMO

Aspergillus fumigatus is the species that most commonly causes the opportunistic infection invasive aspergillosis (IA) in patients being treated for hematological malignancies. Little is known about the A. fumigatus proteins that trigger the production of Aspergillus-specific IgG antibodies during the course of IA. To characterize the serological response to A. fumigatus protein antigens, mycelial proteins were separated by 2-D gel electrophoresis. The gels were immunoblotted with sera from patients with probable and proven IA and control patients without IA. We identified 49 different fungal proteins, which gave a positive IgG antibody signal. Most of these antigens play a role in primary metabolism and stress responses. Overall, our analysis identified 18 novel protein antigens from A. fumigatus. To determine whether these antigens can be used as diagnostic or prognostic markers or exhibit a protective activity, we employed supervised machine learning with decision trees. We identified two candidates for further analysis, the protein antigens CpcB and Shm2. Heterologously produced Shm2 induced a strongly proinflammatory response in human peripheral blood mononuclear cells after in vitro stimulation. In contrast, CpcB did not activate the immune response of PBMCs. These findings could serve as the basis for the development of an immunotherapy of IA.


Assuntos
Antígenos de Fungos/análise , Aspergillus fumigatus/imunologia , Proteômica/métodos , Aspergilose/imunologia , Estudos de Casos e Controles , Células Cultivadas , Proteínas Fúngicas/análise , Proteínas Fúngicas/imunologia , Humanos , Imunoglobulina G/biossíntese , Leucócitos Mononucleares/imunologia , Infecções Oportunistas/imunologia , Aprendizado de Máquina Supervisionado
13.
Cell Microbiol ; 18(7): 889-904, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26752615

RESUMO

Intestinal epithelial cells (IEC) form a tight barrier to the gut lumen. Paracellular permeability of the intestinal barrier is regulated by tight junction proteins and can be modulated by microorganisms and other stimuli. The polymorphic fungus Candida albicans, a frequent commensal of the human mucosa, has the capacity of traversing this barrier and establishing systemic disease within the host. Infection of polarized C2BBe1 IEC with wild-type C. albicans led to a transient increase of transepithelial electric resistance (TEER) before subsequent barrier disruption, accompanied by a strong decline of junctional protein levels and substantial, but considerably delayed cytotoxicity. Time-resolved microarray-based transcriptome analysis of C. albicans challenged IEC revealed a prominent role of NF-κB and MAPK signalling pathways in the response to infection. Hence, we inferred a gene regulatory network based on differentially expressed NF-κB and MAPK pathway components and their predicted transcriptional targets. The network model predicted activation of GDF15 by NF-κB was experimentally validated. Furthermore, inhibition of NF-κB activation in C. albicans infected C2BBe1 cells led to enhanced cytotoxicity in the epithelial cells. Taken together our study identifies NF-κB activation as an important protective signalling pathway in the response of epithelial cells to C. albicans.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NF-kappa B/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Linhagem Celular , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade nas Mucosas/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , NF-kappa B/genética , Estresse Fisiológico/fisiologia , Proteínas de Junções Íntimas/metabolismo
14.
Biol. Res ; 49: 1-16, 2016. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-950861

RESUMO

BACKGROUND: Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. RESULTS: Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, "Cell cycle" was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, "DNA repair" and "replication" pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. CONCLUSION: We found the pathways associated with "DNA repair" and "replication" less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction.


Assuntos
Humanos , Masculino , Senescência Celular/fisiologia , Fibroblastos/efeitos da radiação , Fatores de Tempo , Dano ao DNA , Immunoblotting , Regulação para Baixo/efeitos da radiação , Regulação para Cima/efeitos da radiação , Células Cultivadas , Análise de Variância , Senescência Celular/efeitos da radiação , Senescência Celular/genética , beta-Galactosidase/metabolismo , Análise de Sequência de RNA , Perfilação da Expressão Gênica , Feto Abortado , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Fibroblastos/fisiologia , Raios gama , Pulmão
15.
Mol Biosyst ; 11(8): 2190-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26010061

RESUMO

The GLI transcription factors, GLI1, GLI2, and GLI3, transduce Hedgehog and non-hedgehog signals and are involved in regulating development and tumorgenesis. Surprisingly, they were recently found to modulate important functions of mature liver. However, less is known about their mutual interactions and possible target genes in mature hepatocytes. To get a deeper insight into these interactions cultured mouse hepatocytes were transfected with siRNAs against each GLI factor. RNA was extracted at different times and the expression levels of the genes of interest were determined by quantitative real-time PCR. The time-dependent data were analysed by a fuzzy logic-based modelling approach. The results indicated that the GLI factors constitute an interconnected network. GLI2 inhibited GLI1 expression and was coupled with GLI3 by a positive feedback loop. The regulatory activity between GLI1 and GLI3 was more complex switching between a positive and a negative feedback loop depending on whether the level of GLI2 is low or high, respectively. Generally, this network structure enables a dynamic behaviour. When GLI2 is low, it may keep GLI1 and GLI3 activity balanced favouring the appropriate modulation of transcription factors like the Ppars and Srebp1. When GLI2 is high, it may prevent an uncontrolled amplification that may lead to cancer. In conclusion, the three GLI factors in mature hepatocytes form an interactive transcriptional network that is involved in the control of target genes associated with metabolic zonation as well as with lipid and drug metabolism. Its structure in mature cells seems different from embryonic cells.


Assuntos
Proteínas Hedgehog/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/biossíntese , Lógica Fuzzy , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Hepatócitos/metabolismo , Humanos , Inativação Metabólica/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/genética , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
16.
PLoS Genet ; 10(12): e1004824, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474009

RESUMO

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Hifas/genética , Macrófagos/microbiologia , Virulência/genética , Animais , Candidíase/microbiologia , Candidíase/mortalidade , Parede Celular/genética , Parede Celular/metabolismo , Células Cultivadas , Evolução Molecular Direcionada , Regulação Fúngica da Expressão Gênica , Variação Genética , Hifas/patogenicidade , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados
17.
BMC Med Genomics ; 7: 40, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24989895

RESUMO

BACKGROUND: Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis. METHODS: A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 ß, TNF- α, TGF- ß, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying 'ComBat', analyzed for differentially expressed genes over time with 'Limma', and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge. RESULTS: Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., 'cartilage development', a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli. CONCLUSION: A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term 'cartilage development' contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the 'novel' potent growth factor PDGF-D.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Biologia Computacional/métodos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Membrana Sinovial/patologia , Idoso , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
18.
Nat Commun ; 5: 3563, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24714520

RESUMO

D-Glucosamine (GlcN) is a freely available and commonly used dietary supplement potentially promoting cartilage health in humans, which also acts as an inhibitor of glycolysis. Here we show that GlcN, independent of the hexosamine pathway, extends Caenorhabditis elegans life span by impairing glucose metabolism that activates AMP-activated protein kinase (AMPK/AAK-2) and increases mitochondrial biogenesis. Consistent with the concept of mitohormesis, GlcN promotes increased formation of mitochondrial reactive oxygen species (ROS) culminating in increased expression of the nematodal amino acid-transporter 1 (aat-1) gene. Ameliorating mitochondrial ROS formation or impairment of aat-1-expression abolishes GlcN-mediated life span extension in an NRF2/SKN-1-dependent fashion. Unlike other calorie restriction mimetics, such as 2-deoxyglucose, GlcN extends life span of ageing C57BL/6 mice, which show an induction of mitochondrial biogenesis, lowered blood glucose levels, enhanced expression of several murine amino-acid transporters, as well as increased amino-acid catabolism. Taken together, we provide evidence that GlcN extends life span in evolutionary distinct species by mimicking a low-carbohydrate diet.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Glucosamina/farmacologia , Longevidade/efeitos dos fármacos , Animais , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
BMC Syst Biol ; 7: 124, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24219887

RESUMO

BACKGROUND: Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. RESULTS: Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. CONCLUSIONS: Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Condrócitos/citologia , Condrogênese , Biologia Computacional , Regulação da Expressão Gênica , Humanos
20.
Aging Cell ; 12(3): 508-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23534459

RESUMO

Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. This requires two transcription factors, namely DAF-16 and SKN-1, which employ the metallothionein MTL-2 as well as the mitochondrial transporter TIN-9.1 to extend lifespan. Taken together, low-dose arsenite extends lifespan, providing evidence for nonlinear dose-response characteristics of toxin-mediated stress resistance and longevity in a multicellular organism.


Assuntos
Arsenitos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Hormese , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Teratogênicos/farmacologia , Células 3T3 , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead , Células Hep G2 , Humanos , Metalotioneína/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA